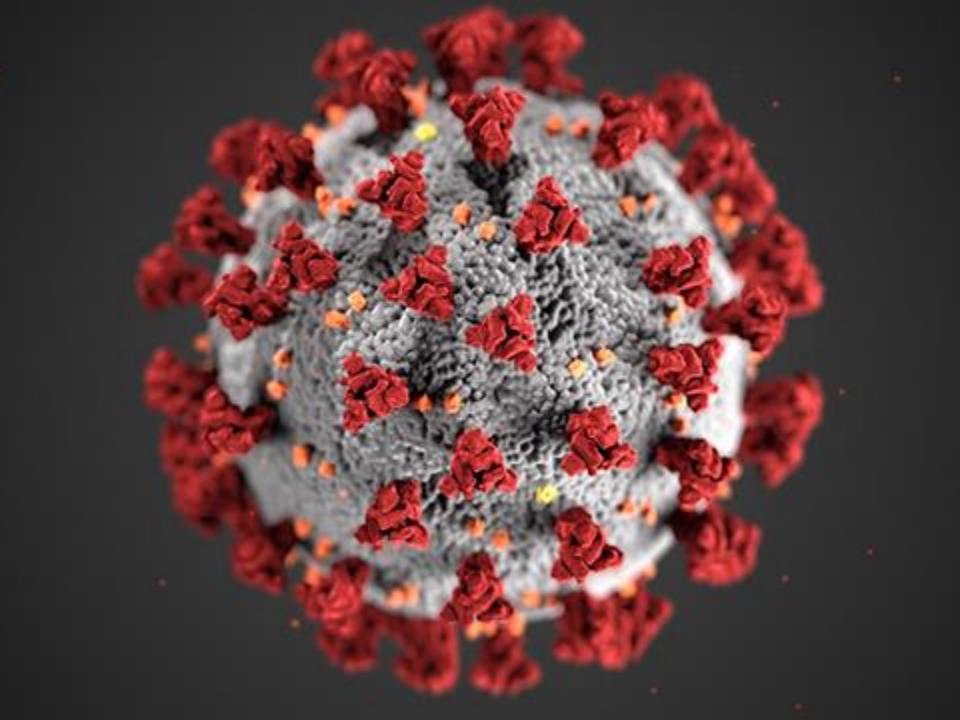
THE UTILITY OF SARS-COV-2 GENOME SEQUENCING ON THE ION TORRENT GENEXUS PLATFORM

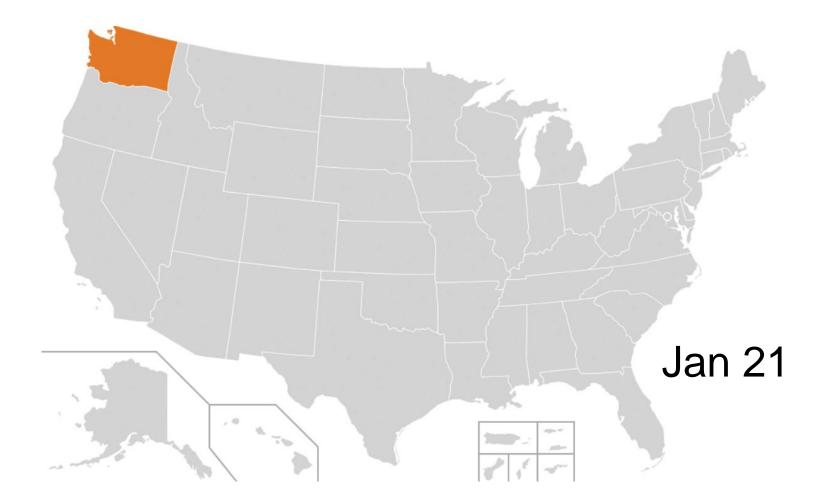
Sixto M. Leal Jr, MD, PhD Department of Pathology Division of Laboratory Medicine 10/07/2021

DISCLOSURES

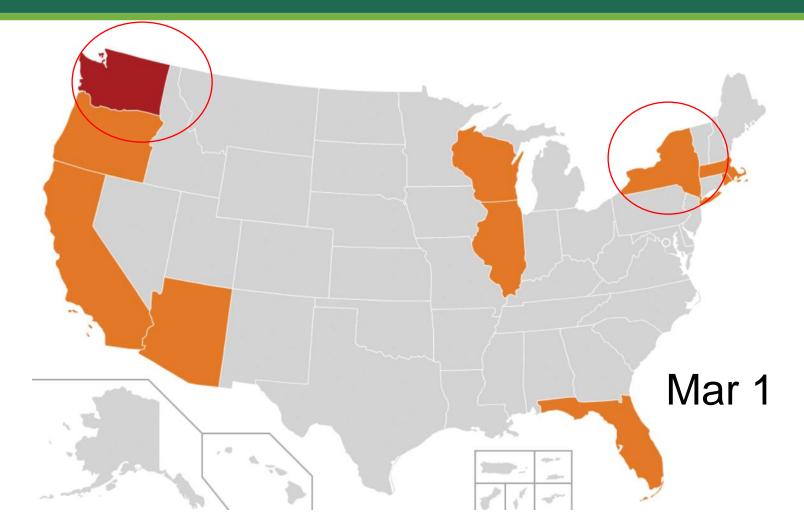
- Principal Investigator on research studies with:
 - Amplyx Pharmaceuticals
 - GenMark Diagnostics
 - CNINE
 - IMMY
 - mFluidX
 - Abnova
 - SpeeDx
- Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.
- Speaker was provided honorarium by Thermo Fisher Scientific for providing this presentation.



OBJECTIVES


□ Discuss the UAB Fungal Reference Lab COVID-19 experience

- Introduce the Thermo Fisher Ion Torrent Genexus Sequencing Platform and Ion AmpliSeq SARS-CoV-2 Insight Research Assay
- Discuss lab implementation/workflow
- □ Highlight the impact of our sequencing data on public health



JANUARY 21 - FIRST CASE OF SARS-COV-2 INFECTION REPORTED IN WASHINGTON STATE



MARCH 1 - MAJORITY OF COMMERCIAL DIAGNOSTIC TESTS APPROPRIATED TO "HOT SPOTS" (WASHINGTON, NY)

Commercial tests NOT available. URGENT need to obtain reagents and develop a novel PCR assay

MARCH 17 - UAB FRL SARS-COV-2 TEST GOES LIVE

24 H TAT (MOST SAME DAY) ENABLED UAB HOSPITALS AND MANY REGIONAL HOSPITALS TO RETURN TO OPERATION

IN-HOUSE TESTING ENABLED THE START OF CLINICAL TRIALS AND BIOSPECIMEN REPOSITORY

LKB. THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Center for Clinical and Translational Science

|--|

CCTS Forms CCTS Quicklinks CCTS Video Channel UAB Quickli

Partner Network Research Commons Training Academy Clinical Translation Engagement of Communities Special Modules News & Events About

Plans to unite our students, faculty and staff and UAB's mission to fight COVID-19

COVID-19 Enterprise Research Initiative

Informatics

BERD

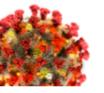
Panels

Funding Opportunities

Grant Help

Research Implementation

OnCore


Commercialization

Trainings

Resources

Contact

Jennifer Croker, PhD Sr. Administrative Director, CCTS jcroker@uab.edu

Home

COVID-19 Enterprise Research Initiative

Biospecimen Clinical Data Biomedical Data Teams & Working Groups Tools & Resources Literature

Contact

Working with the Division of Infectious Diseases as well as other UAB divisions and departments and coordinated by the CCTS, the IRB has endorsed an Enterprise Research Platform for COVID-19 to shepherd the safe and efficient consent process and collection of specimens and clinical data, which is ongoing. CCTS Informatics, with the Center for Outcomes & Effectiveness Research, Informatics Institute and multiple schools, is coordinating clinical data and longitudinal follow-up for rigorous secondary analysis that ensures efficient and respectful engagement of research participants. This new Enterprise Platform will serve to anchor and enable all COVID-19-related human subjects research across the campus.

Enterprise Advantages:

Recruitment process that protects the safety and health of research teams and patients

Coordinated strategy for specimen and data collection that respects the good will of the participant

Consent for longitudinal follow-up, recall and invitation to participate in future studies

JUNE 22 - INITIATIVE TO TEST 250,000 COLLEGE STUDENTS PRIOR TO RETURN TO SCHOOL

Home Testing v Tools v Actions v Impact Media v About v Support v

Protect Your Community. Protect Your Privacy. Protect Your Life. Stop the Spread of COVID in Alabama.

Get the App. Download now.

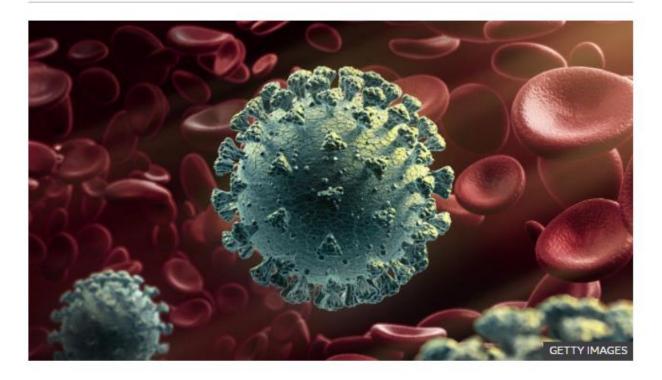
JULY 28-AUG 30 – THE GUIDESAFE INITIATIVE TEAM RESULTED UP TO 11,337 TESTS PER DAY

Helped implement a safe return to college campuses in the State of AL
 Resources and infrastructure subsequently used for sentinel testing

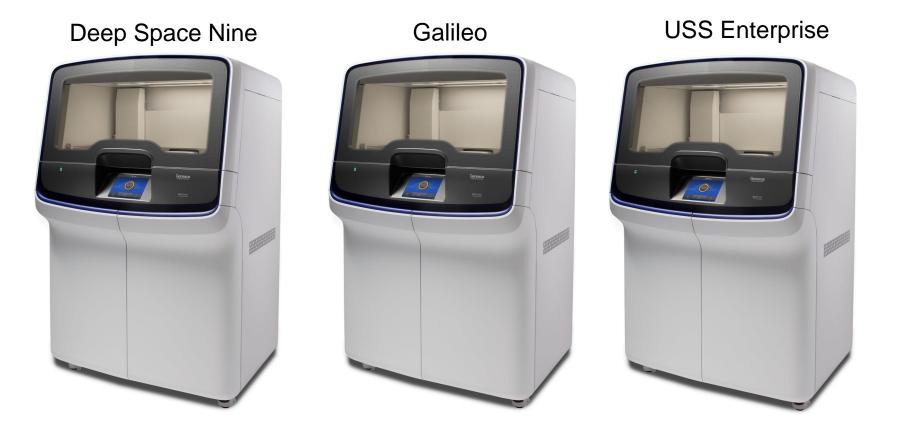
AUG 09 - SUNDAY NIGHT 2AM - "POOLING" AN ALL-NIGHTER

SARS-CoV-2 Expansion from March to August

DECEMBER 2020 - REPORTS OF A NEW MORE INFECTIOUS UK VARIANT

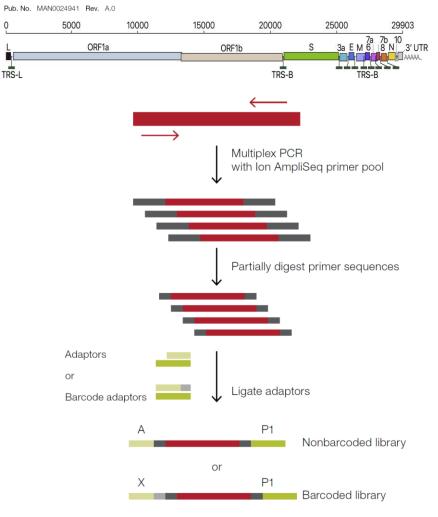

BBC • NEWS

New coronavirus variant: What do we know?


By James Gallagher Health and science correspondent

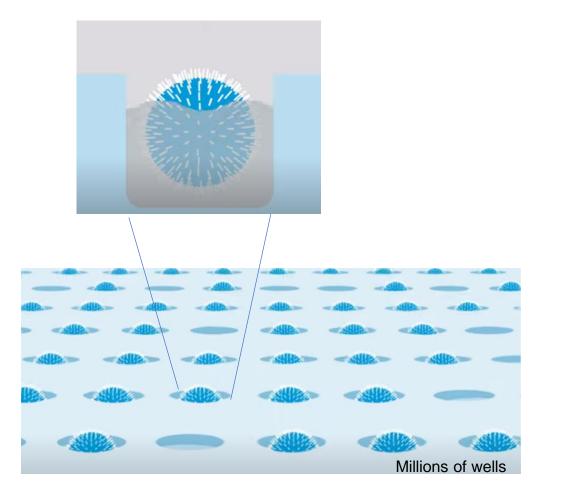
() 20 December 2020

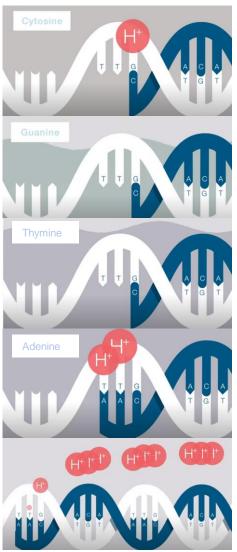
DECEMBER 2020- IMPLEMENTED THE ION AMPLISEQ SARS-COV-2 INSIGHT RESEARCH ASSAY ON 3 ION TORRENT GENEXUS SYSTEMS


AMPLICON BASED TARGET ENRICHMENT MULTIPLEX PCR→ ~ 180BP OVERLAPPING AMPLICONS WITH BARCODED ADAPTORS→ ENABLE > 99% GENOME COVERAGE

iontorrent PRC

PRODUCT INFORMATION SHEET


Ion AmpliSeq[™] SARS-CoV-2 Insight Research Assay – GX


Catalog Numbers A51307

16

<u>ION TORRENT - SYNTHESIS BY SEQUENCING</u> PCR EXPANDS SINGLE AMPLICON ON BEAD \rightarrow BEAD IN WELL WITH PH METER \rightarrow NUCLEOTIDES ADDED SEQUENTIALLY \rightarrow H+ RELEASED

<u>WORKFLOW</u>- EXTRACT, MEASURE, DILUTE RNA→ LOAD RNA/ BUFFERS/CONSUMABLES/SEQUENCING CHIP→ ~24H OBTAIN A LIST OF VARIANT CALLS & IRMA FASTA SEQUENCE

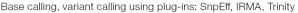
Automate on Genexus Integrated Sequencer

cDNA synthesis

Initialization, sample dilution, and reverse transcription

Library preparation

Ion AmpliSeq library preparation and library equalization


Template preparation

Amplification of library onto Ion Sphere Particles loaded onto GX5 Chip

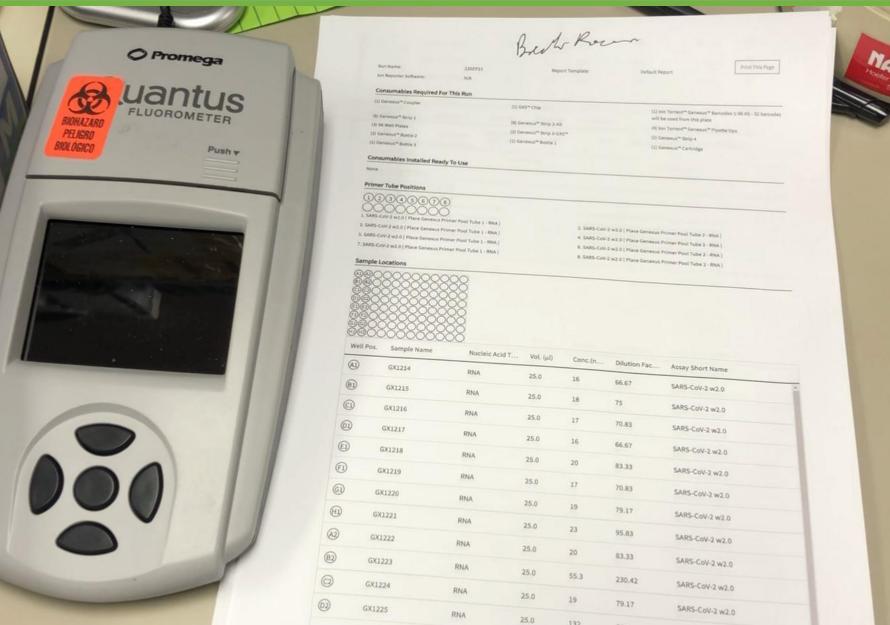
Sequencing

Sequential flows of natural nucleotides measuring incorporation events

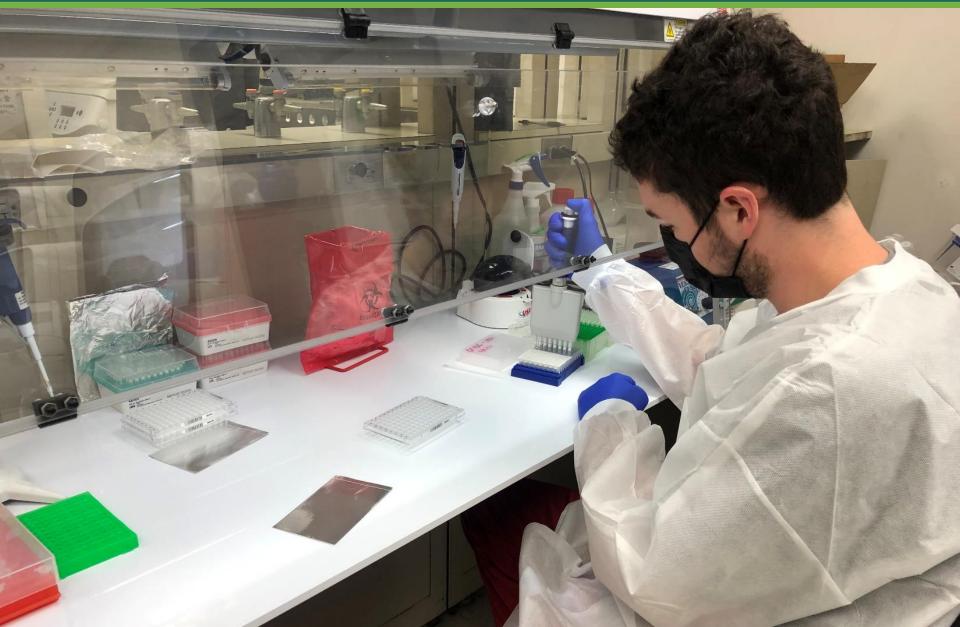
Post-run analysis

<u>WORKFLOW</u>- EXTRACT, MEASURE, DILUTE RNA→ LOAD RNA/ BUFFERS/CONSUMABLES/SEQUENCING CHIP→ ~24H OBTAIN A LIST OF VARIANT CALLS & IRMA FASTA SEQUENCE

- 1. Log samples
- 2. Confirm that viral quantity in the sample meets criteria
 - 1. Cycle threshold </= 30
- 3. Extract, Quantify, Dilute RNA
 - 1. ProMega Maxwell RSC48 system with viral RNA extraction kit
 - 2. ProMega Quantus fluorometer- measure RNA concentration-
 - 3. Genexus software assists with sample dilution factors
- 4. Load RNA in hood into PCR plate
 - 1. 1st 2 columns of plate (n=16)
 - 2. Seal with aluminum foil
- 5. Load Genexus system with the following:
 - 1. Sealed RNA plate
 - 2. 2 empty PCR plates
 - 3. Pipette Tips
 - 4. Consumable reagent strips 1-4
 - 5. Primer pool tubes
 - 6. Bar coding nucleotide tubes
 - 7. Sequencing chip
- 6. Close lid of system
- 7. Robotic arm preps reactions
 - 1. 1 preparation cycle \rightarrow 16 samples
- 8. Onboard thermocycler performs PCR
- 9. Amplicons on beads are loaded into the chip
 - 1. 1 chip \rightarrow 32 sequences total


LOG SAMPLES; CONFIRM THAT CT VALUES MEET THE FRL VIRAL CONCENTRATION THRESHOLD SET AT </=30

	А	В	С	D	E	F	G	Н	I	J	К	L
											PCR platform/Ct/RLU	
1	FRL ID	First Name	Last Name	SeqID	Sample Date	Hospital	City, State	MRN	DOB	Sex		Tissue
1587	GX1586			GX1586								
1588	GX1587			GX1587								
1589	GX1588			GX1588								
1590	GX1589			GX1589								
1591	GX1590			GX1590								
1592	GX1591			GX1591								
1593	GX1592			GX1592								
1594	GX1593			GX1593								
1595	GX1594			GX1594								
1596	GX1595			GX1595								
1597	GX1596			GX1596								
1598	GX1597			GX1597								


EXTRACT VIRAL RNA FROM THE NASAL SWAB

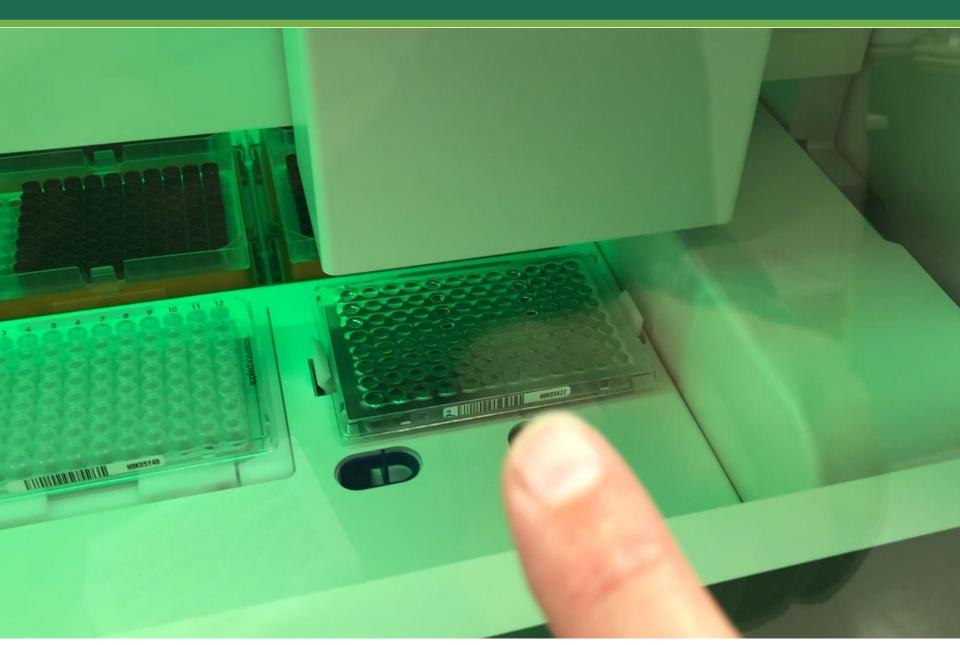
DETERMINE THE RNA CONCENTRATION BY FLUOROMETRY AND DILUTE THE SAMPLE PRIOR TO LOADING ONTO GENEXUS

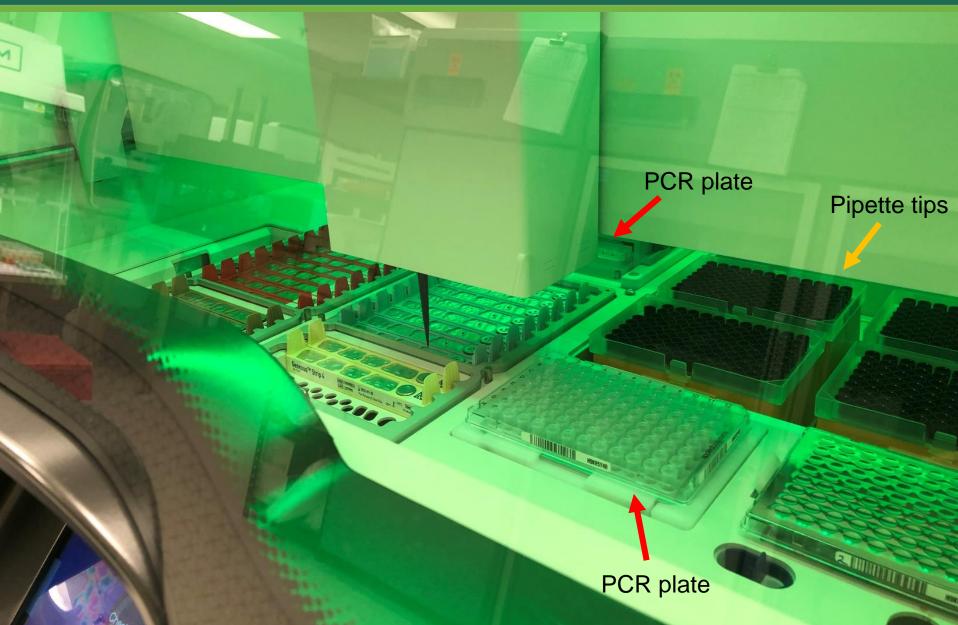

TRANSFER RNA INTO 1ST TWO COLUMNS OF A PCR PLATE AND SEAL WITH ALUMINUM FOIL

LOAD NEW BUFFERS/WASH FLUIDS INTO THE GENEXUS SYSTEM

LOAD TEST STRIPS 1-4 INTO THE GENEXUS SYSTEM

LOAD TEST STRIPS 1-4 INTO THE GENEXUS SYSTEM


LOAD THE SEQUENCING CHIP INTO THE GENEXUS SYSTEM


LOAD TUBES WITH PRIMER POOLS INTO THE GENEXUS SYSTEM

LOAD THE RNA PLATE INTO THE GENEXUS SYSTEM

LOAD PIPETTE TIPS AND 2 EMPTY PCR PLATES INTO THE GENEXUS SYSTEM

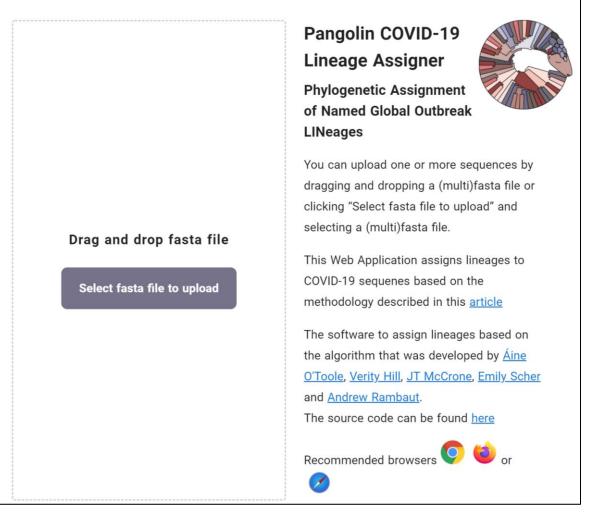
REPORT- VARIANT CALL LIST

SAMPLE REPORT

Sequencing Lab Report : Ion Ampliseq SARS-CoV-2-LowTiter Research Assay 2.0

	A	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q
1	CHROM	POS R	EF	ALT	VARTYPE	GEN[*].GT	ANN[*].GENE	ANN[*].FEATUREID	EFF[*].RANK	ANN[*].HGVS_C	ANN[*].HGVS_P	ANN[*].EFFECT	EFF[*].IMPACT	AF	QUAL	DP	SSSB
2	2019-nCoV	241 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	-1	c25C>T		upstream_gene_variant	MODIFIER	0.999498	14578.1	6883	2.16E-04
3	2019-nCoV	913 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	1	c.648C>T	p.Ser216Ser	synonymous_variant	LOW	0.996	14552.7	6673	4.60E-05
4	2019-nCoV	2110 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	1	c.1845C>T	p.Asn615Asn	synonymous_variant	LOW	0.997999	14673.1	12103	0.00103053
5	2019-nCoV	3037 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	1	c.2772C>T	p.Phe924Phe	synonymous_variant	LOW	0.995468	14658.9	23338	-6.47E-04
6	2019-nCoV	3267 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	1	c.3002C>T	p.Thr1001lle	missense_variant	MODERATE	0.995477	14453.8	2659	5.33E-04
7	2019-nCoV	5388 C		А	SNP	Homozygous	orf1ab	QHD43415.1	1	c.5123C>A	p.Ala1708Asp	missense_variant	MODERATE	1	14831.6	6585	3.42E-04
8	2019-nCoV	5986 C		Т	SNP	Homozygous		QHD43415.1	1	c.5721C>T	p.Phe1907Phe	synonymous_variant	LOW	0.998999	14609.9	4416	5.39E-04
9	2019-nCoV	6954 T		С	SNP	Homozygous	orf1ab	QHD43415.1	1	c.6689T>C	p.lle2230Thr	missense_variant	MODERATE	0.997997	14711.9	12614	4.98E-04
10	2019-nCoV	7984 T		С	SNP	Homozygous	orf1ab	QHD43415.1	1	c.7719T>C	p.Asp2573Asp	synonymous_variant	LOW	0.997997	14722.2	18490	5.21E-06
11	2019-nCoV	10747 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	1	c.10482C>T	p.Asn3494Asn	synonymous_variant	LOW	0.987481	14139.6	18195	-0.00441907
12	2019-nCoV			ΓG	DEL	Homozygous	orf1ab	QHD43415.1		c.11023_11031delTCTGGTTTT	p.Ser3675_Phe3677del	conservative_inframe_deletion		1	14367		0
13	2019-nCoV			Т	SNP	Homozygous		QHD43415.1		c.13856C>T	p.Pro4619Leu	missense_variant	MODERATE				
14	2019-nCoV	14408 C		Т	SNP	Homozygous	orf1ab	QHD43415.1	2	c.14144C>T	p.Pro4715Leu	missense_variant	MODERATE	0.986987	14039.3	5013	0.00132514
15	2019-nCoV			Т	SNP	Homozygous	orf1ab	QHD43415.1		c.14412C>T	p.Pro4804Pro	synonymous_variant	LOW				-0.00100984
16	2019-nCoV			Т	SNP	Homozygous		QHD43415.1		c.15015C>T	p.His5005His	synonymous_variant	LOW				2.25E-04
17	2019-nCoV			С	SNP	Homozygous		QHD43415.1		c.15912T>C	p.Thr5304Thr	synonymous_variant	LOW	0.993994			-3.81E-04
18	2019-nCoV			Т	SNP	Homozygous		QHD43415.1		c.16740C>T	p.Leu5580Leu	synonymous_variant	LOW		14806.2		8.31E-04
19	2019-nCoV			Т	SNP	Homozygous		QHD43415.1		c.17254C>T	p.Leu5752Phe	missense_variant	MODERATE	0.998997			-7.26E-05
20	2019-nCoV			Т	SNP	Homozygous		QHD43415.1		c.19126C>T	p.Pro6376Ser	missense_variant	MODERATE	0.991976			-3.94E-04
21	2019-nCoV			А	DEL	Homozygous		QHD43416.1		c.204_209delACATGT	p.His69_Val70del	disruptive_inframe_deletion	MODERATE	1	14500.6	9668	3.99E-08
22	-			Т	DEL	Homozygous		QHD43416.1		c.432_434delTTA	p.Tyr145del	disruptive_inframe_deletion	MODERATE	0.998978			0_
23	2019-nCoV			Т	SNP	Homozygous	S	QHD43416.1		c.1501A>T	p.Asn501Tyr	missense_variant	MODERATE	0.995484	14458.1	4347	2.86E-04
24	2019-nCoV			A	SNP	Homozygous		QHD43416.1		c.1709C>A	p.Ala570Asp	missense_variant	MODERATE	0.998997			8.35E-05
25				G	SNP	Homozygous		QHD43416.1		c.1841A>G	p.Asp614Gly	missense_variant	MODERATE	0.998492			
26	2019-nCoV			А	SNP	Homozygous	S	QHD43416.1		c.2042C>A	p.Pro681His	missense_variant	MODERATE	0.994478	14428	29192	0.00128508
27	2019-nCoV			Т	SNP	Homozygous		QHD43416.1		c.2147C>T	p.Thr716lle	missense_variant	MODERATE	0.998997			4.44E-04
28	2019-nCoV			G	SNP	Homozygous		QHD43416.1		c.2944T>G	p.Ser982Ala	missense_variant	MODERATE	0.995992			-0.00196254
29	2019-nCoV		i i	С	SNP	Homozygous	S	QHD43416.1		c.3352G>C	p.Asp1118His	missense_variant	MODERATE	0.995491			0.00275755
30	2019-nCoV			Т	SNP	Homozygous		QHD43422.1		c.79C>T	p.Gln27*	stop_gained	HIGH	0.998999	14788		3.66E-04
31	2019-nCoV			Т	SNP	Homozygous		QHD43422.1		c.155G>T	p.Arg52lle	missense_variant	MODERATE				-3.34E-04
32	2019-nCoV			Т	SNP	Homozygous		QHD43422.1		c.202A>T	p.Lys68*	stop_gained	HIGH	0.996491			-0.00818679
33	2019-nCoV				SNP	Homozygous		QHD43422.1		c.218A>G	p.Tyr73Cys	missense_variant	MODERATE	0.998996			9.05E-04
34	2019-nCoV				MNP	Homozygous		QHD43423.2		c.7_9delGATinsCTA	p.Asp3Leu	missense_variant	MODERATE		14341.3		0
35	2019-nCoV				MNP	Homozygous		QHD43423.2		c.608_610delGGGinsAAC	p.ArgGly203LysArg	missense_variant	MODERATE	0.99949	14551		-3.31E-04
36	2019-nCoV	28977 C		Т	SNP	Homozygous	N	QHD43423.2	1	c.704C>T	p.Ser235Phe	missense_variant	MODERATE	0.999499	14779	3391	9.13E-04

REPORT- IRMA FASTA CONSENSUS SEQUENCE


SAMPLE REPORT

Sequencing Lab Report : Ion Ampliseq SARS-CoV-2-LowTiter Research Assay 2.0

>TRINITY GG 1 c0 g1 i1|GX29|len=29829 path=[0:0-29828] GGCTCTTCCATATAGGCAGCTCTCCCCTAGCATTGTTCACTGTACACTCGATCGTACTCCG CGTGGCCTCGGTGAAAATGTGGTGGCTCTTTCAAGTCCTCCCTAATGTTACACACTGATT TTCATTCTGCACAAGAGTAGACTATATATCGTAAACGGAAAAGCGAAAACGTTTATATAG CCCATCTGCCTTGTGTGTGGTCTGCATGAGTTTAGGCCTGAGTTGAGTCAGCACTGCTCATG GATTGTTGCAATTGTTTGGAGAAATCATCCAAATCTGCAGCAGGAAGAAGAGTCACAGTT ŦĠĊŦĠŦŦĊŦŦĊŦĠŦĊŦĊŦĠĊĠĠŦĂĂĠĠĊŦŦĠĂĠŦŦŦĊĂŦĊĂĠĊĊŦŦĊŦŦĊŦŦŦŦŦĠŦĊĊ TTTTTAGGCTCTGTTGGTGGGAATGTTTTGTATGCGTCAATATGCTTATTCAGCAAAATG ACTTGATCTTTGAAATTTGGATCTTTGTCATCCAATTTGATGGCACCTGTGTAGGTCAAC CACGTTCCCGAAGGTGTGACTTCCATGCCAATGCGCGACATTCCCGAAGAACGCTGAAGCG CTGGGGGCAAATTGTGCAATTTGCGGCCAATGTTTGTAATCAGTTCCTTGTCTGATTAGT TCCTGGTCCCCAAAATTTCCTTGGGTTTGTTCTGGACCACGTCTGCCGAAAGCTTGTGTT ACATTGTATGCTTTAGTGGCAGTACGTTTTTGCCCGAGGCTTCTTAGAAGCCTCAGCAGCA GATTTCTTAGTGACAGTTTGGCCTTGTTGTTGTTGGCCCTTTACCAAACATTTTGCTCTCA AGCTGGTTCAATCTGTCAAGCAGCAGCAAAGCAAGAGCAGCATCACCGCCATTGCCAGCC ATTCTAGCAGGAGAAGTTCGTTTACTGCTGCCTGGAGTTGAATTTCTTGAACTGTTGCGA CTACGTGATGAGGAACGAGAAGAGGCTTGACTGCCGCCTCTGCTCCCCTTCTGCGTAGAAG CCTTTTGGCAATGTTGTTCCTTGAGGAAGTTGTAGCACGATTGCAGCATTGTTAGCAGGA TTGCGGGTGCCAATGTGATCTTTGGTGTATTCAAGGCTCCCTCAGTTGCAACCCATATG ATGCCGTCTTTGTTAGCACCATAGGGAAGTCCAGCTTCTGGCCCAGTTCCTAGGTAGTAG AAATACCATCTTGGACTGAGATCTTTCATTTTACCGTCACCACCACGAATTCGTCTGGTA

UPLOAD IRMA FASTA CONSENSUS FILE INTO PANGOLIN COVID-19 LINEAGE ASSIGNER PROGRAM TO DETERMINE LINEAGE

WE INCORPORATED INDEPENDENT CONFIRMATION OF CONSENSUS SEQUENCES AND LINEAGE CALLS

	LABAMA A	T BIRMINGHAM								
Center for Clinica	Center for Clinical and Translational Science									
				CCTS Forms	CCTS Quicklinks	UAB				
Partner Network Research C	Commons	Training Academy	Clinical Research	CCTS Video C Engagement of Communit	thannel Ties Special Modules	Quicklinks				
News & Events About										
		Current C	Covid Health and S	afety Guidelines						
	$\overline{}$	RESEA	RCH C	OMMONS						
		sharpening scier	nce to accelerate	the pace of discovery						
COVID-19 Enterprise Research Initiative Informatics	Bic	oinform	atics							

Elliot Lefkowitz

Curtis Hendrickson

ALABAMA PUBLIC HEALTH

Promoting, protecting, and improving Alabama's health

	А	В	С	D	E	F	G	н	1	J	К	L	М	Ν
										Date		Lineage: Pangolin of		
1	FRL ID	First Name	Last Name	SeqID	Sample Date	Hospital	MRN	DOB	Sex	Sequenced	IRMA contig	IRMA assembly	Signout	NCBI Accession #
												17/17 B.1.1.7		MW651022
2					1/25/2021					1/26/2021	29,843	SNPs	B.1.1.7	
												17/17 B.1.1.7		MW651023
3					1/25/2021					1/26/2021	29,856	SNPs	B.1.1.7	
												17/17 B.1.1.7		MW651024
4					1/26/2021					1/28/2021	29,754	SNPs	B.1.1.7	
												17/17 B.1.1.7		MW651025
5					1/26/2021					1/28/2021	29,844	SNPs	B.1.1.7	
												17/17 B.1.1.7		MW651026
6					1/27/2021					1/28/2021	29,869	SNPs	B.1.1.7	
												16/17 B.1.1.7		MW651027
7					1/24/2021					1/26/2021	29,849	SNPs	B.1.1.7	
														MW651028
8					1/26/2021					1/28/2021	29830	B.1.2	B.1.2	
9					1/26/2021					1/28/2021	29848	B.1.521	B.1.521	MW653862

REPORT RESULTS TO UAB INFECTION PREVENTION

UPLOAD FASTA FILES TO NCBI GENBANK

S NCBI Resources 🕑 How To 🕑 sixleal My NCBI Sign Out												
GenBank Nucleotide ~										Search		
GenBan	k 🔻	Submit	• 0	Genomes 🔻	WGS	•	Metagenomes 🔻	TPA 🔻	TSA 🔻	INSDC 🔻	Other 🔻	
COVID-19 Information Public health information (CDC) Research information (NIH) SARS-CoV-2 data (NCBI) Prevention and treatment information (HHS) Español												

GenBank Overview

What is GenBank?

GenBank[®] is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences (*Nucleic Acids Research*, 2013 Jan;41(D1):D36-42). GenBank is part of the International Nucleotide Sequence Database Collaboration, which comprises the DNA DataBank of Japan (DDBJ), the European Nucleotide Archive (ENA), and GenBank at NCBI. These three organizations exchange data on a daily basis.

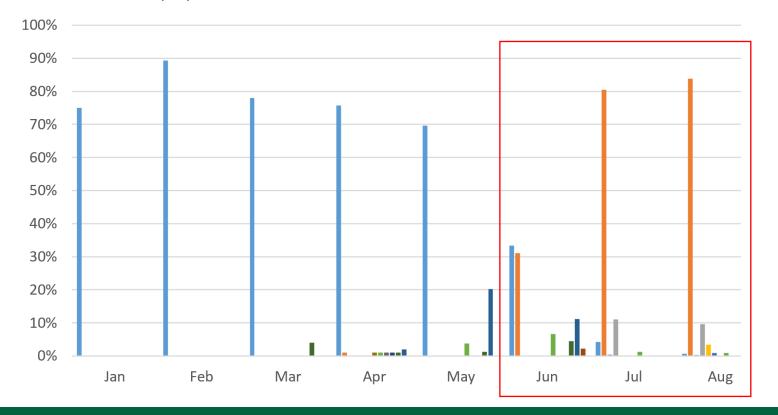
GenBank Resources

GenBank Home	
Submission Types	
Submission Tools	
Search GenBank	
Update GenBank Records	5

UPLOAD FASTA FILES TO GISAID

GISAID Database Features About us Events Collabora In Focus Recommended composition of influenza virus GISRS vaccines for use in the 2022 Southern Hemisphere Influenza Season announced GLOBAL INFLUENZA (Geneva, Switzerland) An advisory group of experts taking part **SURVEILLANCE &** in a virtual meeting organized by the WHO Global Influenza RESPONSE SYS Programme between 13-23 September 2021 analyzed influenza virus surveillance data generated by the WHO Global Influenza Surveillance and Response System (GISRS), and issued on 24 September 2021, recommendations on the composition of the influenza vaccines for the following influenza season. These recommendations are used by the national vaccine regulatory agencies and the pharmaceutical companies to develop, produce and license influenza vaccines. read more: hCoV-19 Submission Tracking hCoV-19 Tracking of Variants

Samples Sequenced prior to 9/1: 890 Sequences available within 3-4 days of samples collection Max Num of Sequences per instrument per month: 320, this assumes that you run 16 samples/run and you complete one run each day Mon-Fri.												
Monthly Breakdown of Samples:	# Soquenced	# Failed	Total Sequenced	% Successful								
Jan	# Sequenced 9	# ralleu		88.89								
Feb	54	7	47	87.04								
Mar	62	12	50									
Apr	122	17	105	86.07								
May	85	6	79	92.94								
Jun	48	3	45	93.75								
Jul	241	6	235	97.51								
Aug	336	15	321	95.54								

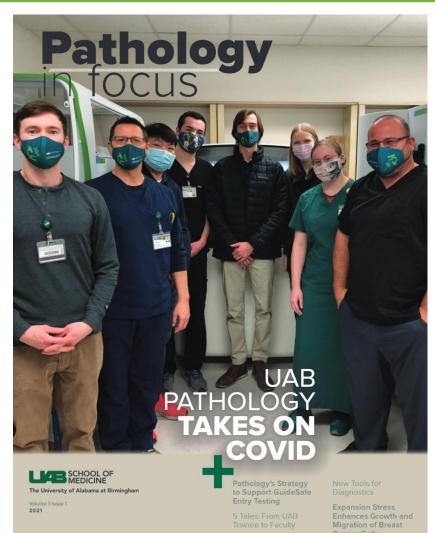

OUR TEAM WAS THE 1^{ST} IN THE STATE OF AL TO DETECT ALL MAJOR VARIANTS OF PUBLIC HEALTH SIGNIFICANCE

Monthly Breakdown by Variant:										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
B.1.1.7 (alpha) "UK"	6	42	39	78	55	15	10	2		247
B.1.2	1	1	5	5	2	1	0	0		15
B.1.521	1	0	0	0	0	0	0	0		1
B.1	0	1	0	0	1	1	0	0		3
B.1.234	0	2	0	0	0	0	0	0		2
B.1.1.222	0	1	0	0	0	0	0	0		1
B.1.1.519	0	0	3	2	0	0	0	0		5
B.1.1.1	0	0	1	4	0	1	0	0		6
B.1.427 (Epsilon) "NY"	0	0	0	1	0	0	0	0		1
B.1.351 (Beta) "South Africa"	0	0	0	1	0	0	0	0		1
B.1.526.2	0	0	0	1	0	0	0	0		1
B.1.1.306	0	0	0	2	0	0	0	0		2
B.1.525 (Eta) "CA"	0	0	0	1	0	0	0	0		1
B.1.540	0	0	0	0	1	0	0	0		1
B.1.596	0	0	0	2	0	0	0	0		2
B.1.526 (lota) "CA"	0	0	2	1	1	2	0	0		6
R.1	0	0	0	1	0	0	0	0		1
B.1.1.28.1	0	0	0	0	0	0		0		0
C.37	0	0	0	2	16	5	0	0		23
P.1 (Gamma) "Brazil"	0	0	0	1	3	3	3	3		13
P.1.7	0	0	0	0	0	0	0	1		1
B.1.621 (Mu) "Peru"	0	0	0	0	0	1	0	0		1
B.1.626	0	0	0	0	0	0	0	0		0
B.1.627	0	0	0	0	0	0	1	0		1
B.1.623	0	0	0	0	0	2	5	0		7
B.1.617.2 (Delta) "Indian"	0	0	0	1	0	14	189	269		473
AY.1 (Delta) "Indian"	0	0	0	0	-	0	0	0		0
AY.2 (Delta) "Indian"	0	0	0	0	0	0	1	1		2
AY.3 (Delta)"Indian"	0	0	0	0	0	0	26	31		57
AY.3.1 (Delta) "Indian"	0	0	0	0	0	0	0	11		11
AY.4 (Delta) "Indian"	0	0	0	0	0	0	0	3		3
AY.5 (Delta) "Indian"	0	0	0	0	0	0	0	0		C
AY.14 (Delta) "Indian"	0	0	0	0	0	0	0	0		0
AY.25 (Delta) "Indian"	0	0	0	0	0	0	0	0		C
Totals/Month	8	47	50	103	79	45	235	321	0	888

OUR TEAM'S DATA SHOWS ALPHA'S PREDOMINANCE FROM JAN-MAY AND DELTA'S RISE STARTING IN JUNE 2021

- AY.2 (Delta) "Indian"
 - AY.4 (Delta) "Indian"
 - B.1.427 (Epsilon) "NY"
 - C.37 (Lambda) "Peru"

LOW VACCINATION RATES WITH CONTINUED SELECTIVE PRESSURE BEG THE QUESTION: WHAT IS COMING NEXT?


Waccinations by location

From Our World in Data · Last updated: 2 days ago

388M	All regions Fully vaccinated 183M +199K	% of population fully vaccinated 55.6% +0.1%							
Location		Doses given	Fully vaccinated	% of population fully vaccinated ↑					
West Virginia		1.54M	721K	40.2%					
Wyoming		512K	237K	41.0%					
Idaho		1.56M	734K	41.1%					
Alabama		4.44M	2.05M	41.7%					
Mississippi		2.73M	1.27M	42.6%					
U.S. Virgin Islands		101K	45,959	43.1%					
North Dakota		732K	332K	43.5%					
Georgia		10.5M	4.74M	44.6%					
Tennessee		6.76M	3.05M	44.7%					
Louisiana		4.45M	2.08M	44.8%					
Arkansas		3.03M	1.36M	45.0%					
South Carolina		5.16M	2.39M	46.4%					
Oklahoma		4.08M	1.86M	46.9%					
Missouri		6.2M	2.9M	47.3%					
Indiana		6.66M	3.23M	48.0%					
Montana		1.09M	514K	48.1%					
North Carolina		11.1M	5.14M	49.0%					

What viral variant is coming next?

OUR TEAM WILL CONTINUE TO WORK ON THE FRONTLINE TO DETECT VIRAL VARIANTS OF PUBLIC HEALTH SIGNIFICANCE IN AN EFFORT TO MITIGATE THE CURRENT PANDEMIC

Thank you for your time and attention

LASTHE UNIVERSITY OF ALABAMA AT BIRMINGHAM