Selection of Negative Mode Standard in LC-MS Under Neutral Conditions for Assessing Solvent Quality

Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific - Global Chemicals, One Reagent Lane, Fair Lawn, NJ

NTRODUCTION

Liquid chromatography mass spectrometry (LC-MS) is a widely used technique in pharmaceuticals, proteomics, metabolomics and biotechnology field. With the advancement of instrument sensitivity, demand for interference free mobile phases is increasing. Optimization of the quality of mobile phase solvents can improve the overall performance of LC-MS. The quality of the LC-MS grade solvents should enable the detection and identification of trace level standards without any interference. A number of LC-MS standards are available that ionize easily in positive mode under neutral conditions or by applying additives such as formic acid or acetic acid and using a combination of low pH and optimal ionic strength of the buffer. In contrast, negative mode ionization is rather challenging under neutral conditions.

MATERIAL AND METHODS

- HPLC-MS: Agilent 1100 HPLC equipped with auto-sampler and diode array detector (DAD) attached to Agilent SL MSD single quadrupole mass spectrometer
- Column: Agilent Zorbax XDB C-18 (150 x 2.1 mm, 3.5 micron), Catalog No: 930990-902
- Flow: 0.3 mL/min
- Injection volume: 5 µL
- Solvents for mobile phase were Optima[®] LC/MS grade
- Mobile phase A: Water (or 10 mM ammonium acetate in water)
- Mobile phase B: Acetonitrile (ACN) and methanol

Gradient:		
Time (minute)	Mobile phase A	Mobile phase B
0	90	10
2	90	10
15	0	100
25	0	100
Post time: 10 minutes		

- UHPLC: Thermo Scientific Accela UHPLC system comprised of an auto-sampler, photodiode array detector and attached to an LTQ-XL mass spectrometer equipped with an electro-spray ionization interface
- Column: Thermo Scientific Hypersil Gold™ column (50 mm x 2.1 mm x 1.9 micron; part # 26-102-052130)
- Flow: 0.5 mL/min
- Injection volume: 5 µL

Gradient:		
Time (minute)	Mobile phase A	Mobile phase B
0	90	10
0.5	90	10
2	0	100
5	0	100
Post time: 5 minutes		

- a. water/ACN
- c. water/methanol
- Capillary voltage: 3500 V
- Capillary temperature: 350 °C Fragmentor: 70 V
- Electro spray using negative mode ionization Selected ion monitoring was performed for m/z 138 and m/z 321
- Compounds (purchased from Sigma-Aldrich, St. Louis, MO) used for screening: para-nitrophenol (PNP), chloramphenicol (CHL), mecoprop (MCP), aldicarb, digoxin, naproxen, baicalin, azomethine and quercetin
- Concentration of compounds varied from 10 µg/mL (ppm) to 10 ng/mL (ppb)

of Co	ructure
P-Nitr	
Chemical Fo Exact Ma	
Alc	
Chemical F Exact /	

Sti

RESULTS

- Using a water/ACN gradient, selected ion monitoring (SIM) for p-nitrophenol and chloramphenicol showed significant response (Fig. 1).
- Although PNP had a linear response with concentration in LC-UV, the response in mass spec was non-linear; the same trend was observed when PNP was run using AA/ACN gradient and in UHPLC-MS (Figs. 2-4).
- Mecoprop showed linear response both in LC-UV and LC-MS in water. ACN and AA/ACN (Figs. 5 and 6).
- Response of chloramphenicol was observed better in water/ACN compared to AA/ACN and water/methanol (Fig. 7).
- Poor or no ionization was observed for aldicarb, quercetin, azomethine, baicalin, digoxin and naproxen using water/ACN and water/methanol gradient even at 10 µg/mL concentration (data not shown).

Figure 1. Select					
	Fig	ure	1.	Se	lec
Image: State in the international state internatine state in the international state in the international					F
		MS02 TIC, MS File (C1CHEN0201 4	NATAISB2013/12021358_NE	6510 1112713000007.0) E	SAPI, SIM, Frag: 70, "SI
180 0	200				
	190 ·				
100 7 8 9 10 100 MSD2 TD, MS File (SCHEM22MALARGED/SCH2CESS), MSSTB M12710000000) (ESAFLSM, Forg 70, 'SB 9 10 226 7 8 9 10 101 MSD2 TD, MS File (SCHEM22MALARGED/SCH2CESS), MSSTB M12710000000) (ESAFLSM, Forg 70, 'SB 9 10 103 7 8 9 10 103 7 8 9 10 103 9 9 10 10 103 9 9 10 10 103 9 9 9 10 104 1052 TD, MS File (SCHEM22MALARGED/SCH2CESS), MSSTD TD, ESAFLSM, Forg 70, 'SB 9 10 103 9 9 9 10 10 104 7 8 9 10 10 104 7 8 9 10 10 104 7 8 9 10 10 105 7 8 9 10 10	190 -				
8 7 8 9 9 Image: State of the stat	170-		<u> </u>	<u> </u>	
279 289 289 290 105 105 105 105 105 105 105 10	1	B 7 B MSD2 TIC, MS File (C10HEMB2M	8 Nataise2013/12021358_NE	9 65TD 11/12713000008.0) E	10 SAPL SIM, Frag: 70, "Sil
26 30 30 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	235				
225 300 173 8 7 8 9 10 100 101 101 102 102 102 102 1	250				
200 7 8 9 9 103 7 8 9 9 9 103 10 MS02 TIC, MS File (SUCHA22MA4TA6820/H30202058) (HE6511h H1271500000.0) (ESAPL SM, File 770, 'S0 9 9 9 9 200 200 7 8 9 10 9 10 200 7 8 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 <t< td=""><td>225</td><td></td><td></td><td></td><td></td></t<>	225				
103 7 8 9 10 103 7 8 9 10 10 103 7 8 9 10 10 10 103 10 10 10 10 10 10 10 103 10 10 10 10 10 10 10 103 10	200-				
KSCP TIC, MS File (SCHEAK2MAATAGE2043CB2 CSSB (HESTID H1271000000.0) ES-AH, SM, File (TU, 'SD S0 S0 S0 S0 T B S0	ימו		****		10
500 200 500 500 500 500 500 500		MS02 TIC, MS File (C10HEM82M	NATAISB2013/12021358_NE	65TD 11112713000000.0) E	SAPI, SIM, Frag: 70, "SI
00 20 0 0 0 0 0 0 0 0 0 0 0 0 0	360 -				
200 000 000 000 000 000 000 000	300				
000 7 8 9 10 1 KSX TX, K5 Frie (SCHCAR2MAATABEEDISCERCES) (K5515 H1C27500000.1) ES-AFL SM, Frie TU, 'SS 000 000 000 000 000 000 000	250				
500 300 300 500 500 500 500 500	200			<u></u>	
		T NSIQ TIC. NS FILL CYCHENG2M	8 NATAGBOINTMODOLOGIE NE-	9 6510 1812713000040.01 E	1) S-API, SIM, Fran 70, "SI
]	_	8	
	500 -				
	400-				
	300-			l	
	200	B 7		·····	10
· · · · · · · · · · · · · · · · · · ·			-	-	-

- Samples were run using the following solvent pairs:
- b. 10 mM ammonium acetate in water/ACN
- Mass spectrometer (single quadrupole) parameters

•

PNP (m/z 138) was observed as m/z 252 (TFA adduct)

	•
CN	Discus
Height (SIM)	• A
on of Mecoprop	ar
∕ ◆	US
	th th
	ac
	İS
	pr
	a
2 3	th th
(5,)	
Peak height	
(SIM) 554.05	
1025.23	
2094.84 4970.21	
8000.51	
12138.00	
	TU
N and	ot
	m m
	5
	• In
1	ch
	•
	• Bo
	tr
	CC
	e ga
	l i m
	th th
	•
	• Us
	ac
	•
	• Fr
	• St
rent Mobile	10
	ac ac
	•
	•
	•
er/ACN	
er/MeOH ACN	
	• Anegativ
	neutral d
	Chloram
	in water
	•

- combination of higher pH and additive (such as ammonia, nmonium formate and ammonium acetate) is commonly sed to help ionize compounds in negative ESI-MS although nis practice may lead to complexity in determining the tual mass of the analyte. Assessing mobile phase quality also difficult in the presence of additives. Therefore, it is eferable to use an MS standard that is easily ionized under neutral condition without any external reagents to assess e solvent quality.
- rom our analysis, a significant response was observed from hree compounds: p-nitrophenol (PNP), chloramphenicol CHL) and mecoprop (MCP), and these compounds were etected at parts per billion concentration under neutral onditions in ESI-MS negative mode.
- elected ion monitoring for the compound of interest was ompared with the extracted ion chromatogram from the Il scale data.
- ne signal intensity under the same analysis condition was oserved as PNP>CHL>MCP. The difference in signal intensity ay be due to differences of pKa (PNP [pKa 7.16], CHL [pKa 5, 7.49, & 11.03] and MCP [pKa 3.78]).
- water/methanol mobile phase, LC-MS ionization of nloramphenicol was suppressed compared to water/ cetonitrile.
- oth PNP and CHL showed adduct formation with ifluoroacetic acid (TFA) anion that could be a carryover ontaminant from a previous run. This likely occurs in the as-phase during evaporation of charged droplets of the nobile phase. The volatile nature of TFA helped increase he local pH of the droplets favoring adduct formation.
- se of 10 mM ammonium acetate (at neutral pH) in water/ cetonitrile mobile phase suppressed the ionization of both NP and CHL compared to water/acetonitrile mobile phase.
- rom these data, chloramphenicol appears to be the best andard for evaluating mobile phase quality in negative nization mode under neutral conditions without any ditives.

JSIONS

- ve mode ESI-MS comparison of standards is performed under conditions to assess the solvent quality for LC-MS analysis.
- phenicol showed linear response under neutral conditions /ACN and water/methanol mobile phases.

