A complete workflow solution for detecting respiratory tract microbiota using TaqMan Array Cards

In this report, we show that:

- Applied Biosystems[™] TaqMan[®] Assays for respiratory tract microbiota meet rigorous performance criteria
- Applied Biosystems[™] TaqMan[®] Array Card microfluidic technology allows simultaneous interrogation of 42 respiratory tract microbes including bacteria, viruses, and fungiusing 44 assays and 4 controls
- The Thermo Scientific[™] KingFisher[™] Purification System, TaqMan Array Cards, and Applied Biosystems[™] QuantStudio[™] 7 or 12K Flex Real-Time PCR System are part of a simple, integrated workflow for microbial detection with minimal hands-on time

Introduction

Upper and lower respiratory tract infections are caused by a broad range of microbes including RNA and DNA viruses, bacteria, and even fungi, and yet are often symptomatically similar. Detection of these pathogens can be challenging: immunoassays are limited to a small number of respiratory pathogens and lack sensitivity, whereas culture-based methods are labor intensive, have long turnaround times, and are prone to false-negative results due to fastidious growth in culture. While molecular detection is more sensitive, most commercially available tests are expensive, primarily focus on either viruses or bacteria, and lack the flexibility to customize target lists based on laboratory needs. In addition, concurrent prevalence of viral and bacterial pathogens is a growing concern and needs effective detection methods.

To meet the need for more comprehensive coverage of respiratory pathogens, we introduce a panelbased molecular solution that detects a wide range of respiratory viruses, bacteria, and fungi in a single assay. The Applied Biosystems[™] TaqMan[®] Array Respiratory Tract Microbiota Comprehensive Card is simple to use and, because it is qPCR based, can detect pathogenic organisms at very low concentrations. The flexible content can be customized to meet the needs of any laboratory. When combined with the KingFisher Purification System and QuantStudio 7 or 12K Flex Real-Time PCR System, the card offers a complete end-to-end solution for respiratory pathogen detection (Figure 1).

Respiratory tract samples (e.g., nasopharyngeal aspirates and swabs) Automated nucleic acid isolation using the KingFisher Purification System Preamplification then realtime PCR using TaqMan Array Card and QuantStudio 7 or 12K Elex outcom

Presence/absence results

Figure 1. Workflow for detection of respiratory tract pathogens. The workflow shows extraction of total nucleic acid from respiratory tract samples using the KingFisher Purification System and MagMAX Viral/Pathogen Ultra Nucleic Acid Isolation Kit, followed by preamplification then real-time PCR analysis using the TaqMan Array Respiratory Tract Microbiota Comprehensive Card on the QuantStudio 7 or 12K Flex system. Results are provided in the form of a presence or absence call for each of 42 targets that include bacteria, RNA and DNA viruses, and fungi, and, if used, the *B. atrophaeus* extraction and Xeno RNA spike-in controls.

Materials and methods

Total nucleic acid isolation from respiratory tract samples

The Applied Biosystems[™] MagMAX[™] Viral/Pathogen Ultra Nucleic Acid Isolation Kit was used to isolate total nucleic acid (TNA) from respiratory samples. This kit was optimized for extraction of TNA from the different microbe types that are found in respiratory samples (RNA viruses, DNA viruses, bacteria, and fungi) and was shown to work well with respiratory sample types including nasopharyngeal swabs, nasopharyngeal aspirate, and bronchoalveolar lavage. TNA isolation from 96 samples using the Thermo Scientific[™] KingFisher[™] Flex Purification System took about 1.5 hours with 30 minutes of hands-on time.

Detection of respiratory tract microbes using TaqMan Array Cards

Qualified TaqMan Assay designs and target sequences for respiratory tract microbiota underwent thorough bioinformatics selection and analysis for high strain coverage and specificity. The assays have also undergone extensive performance testing with synthetic templates, nucleic acids extracted from whole-organism standards, and clinical research samples to help ensure that results are accurate and reproducible with high levels of sensitivity and specificity. TaqMan Array Cards are 384-well microfluidic cards with 8 sample ports that are designed for performing 384 simultaneous real-time PCR reactions without the need for expensive liquid-handling automation. TaqMan Array Cards are preloaded with dried-down TaqMan Assays in 1 μ L wells, ready for up to 8 samples to be run in parallel against 12 to 384 TaqMan Assay targets.

The TaqMan Array Respiratory Tract Microbiota Comprehensive Card used in this study is an efficient, easy-to-use TaqMan Array Card (48-assay format) for the characterization of key respiratory tract microbes through real-time PCR. This card includes TaqMan Assays that have been optimized for detection of 42 respiratory tract viral, bacterial, and fungal microbes. The array card also includes control assays for the Applied Biosystems[™] TaqMan[®] Universal Extraction Control Organism (*B. atrophaeus*), TaqMan[®] Universal RNA Spike In/ Reverse Transcription (Xeno) Control, the human RNase P gene (*RPPH1*), and the human 18S ribosomal RNA gene (mandatory manufacturing control). For a complete list of assays included on the TaqMan Array Respiratory Tract Microbiota Comprehensive Card, see Table 1.

Table 1. Categorization of respiratory tract microorganisms.

ganism type	Nucleic acid type	Assay ID	Assay name	Organism name		
		Vi99990001_po	AdV_1of2	Adenovirus 1/2*		
		Vi99990002_po	AdV_2of2	Adenovirus 2/2*		
		Vi99990003_po	HBoV	Human bocavirus		
	DNA	Vi06439647_s1	HHV3	Human herpesvirus 3 (HHV3-varicella zoster virus)		
		Vi06439675_s1	HHV4	Human herpesvirus 4 (HHV4–Epstein-Barr virus)		
		 Vi06439643_s1	HHV5	Human herpesvirus 5 (HHV5–cytomegalovirus)		
		Vi06439627_s1	HHV6	Human herpesvirus 6 (HHV6)		
		Vi06439671_s1	CoV_229E	Human coronavirus 229E		
		 Vi06439674_s1	CoV_HKU1	Human coronavirus HKU1		
		Vi06439673_s1	CoV_NL63	Human coronavirus NL63		
		Vi06439646_s1	CoV_OC43	Human coronavirus OC43		
		Vi06439631_s1	EV_pan	Human enterovirus (pan assay)		
		Vi06439669_s1	EV_D68	Human enterovirus D68		
		Vi99990004 po	hMPV	Human metapneumovirus (hMPV)		
		Vi06439642_s1	hPIV1	Human parainfluenza virus 1 (hPIV1)		
Virus		Vi06439672_s1	hPIV2	Human parainfluenza virus 2 (hPIV2)		
VIIUS		Vi06439670_s1	hPIV3	Human parainfluenza virus 3 (hPIV3)		
		Vi99990005_po				
		Vi99990005_p0	HPeV	Human parainfluenza virus 4 (hPIV4) Human parechovirus		
	RNA	Vi99990008_p0	RSVA	Human respiratory syncytial virus A (RSVA)		
		Vi99990014_p0	RSVB	Human respiratory syncytial virus A (RSVA)		
		Vi99990007_po	RV_1of2	Human rhinovirus 1/2*		
		Vi99990008_po	RV_2of2	Human rhinovirus 2/2*		
		Vi99990011_po	Flu_A_pan	Influenza A		
		Vi99990009_po	Flu_A_H1	Influenza A/H1-2009		
		Vi99990010_po	Flu_A_H3	Influenza A/H3		
		Vi99990012_po	Flu_B_pan	Influenza B		
		Vi99990013_po	Measles	Measles virus		
		Vi06439644_s1	MERS_CoV	Middle East respiratory syndrome coronavirus (MERS)		
		Vi06439657_s1	Mumps	Mumps virus		
		Vi06439634_s1	SARS_CoV	Severe acute respiratory syndrome coronavirus (SARS)		
		Ba06439624_s1	Bordetella	Bordetella bronchiseptica, parapertussis, or pertussis		
		Ba06439621_s1	B. holmesii	Bordetella holmesii		
		Ba06439623_s1	B. pertussis	Bordetella pertussis		
		Ba06439616_s1	C. pneumoniae	Chlamydophila pneumoniae		
		Ba06439618_s1	C. burnetii	Coxiella burnetii		
Bacterium	DNA	Ba06439625_s1	H. influenzae	Haemophilus influenzae		
		Ba04932083_s1	K. pneumoniae	Klebsiella pneumoniae		
		Ba06439617_s1	L. pneumophila	Legionella pneumophila		
		Ba06439622_s1	M. catarrhalis	Moraxella catarrhalis		
		Ba06439620_s1	M. pneumoniae	Mycoplasma pneumoniae		
		Ba04646259_s1	S. aureus	Staphylococcus aureus		
		Ba06439619_s1	S. pneumoniae	Streptococcus pneumoniae		
Fungus	DNA	Fn06439626_s1	P. jirovecii	Pneumocystis jirovecii		
	RNA	Ac00010014_a1	Xeno	Xeno RNA control		
Control	DNA	Hs04930436_g1	RPPH1	Ribonuclease P RNA component H1		
	DINA	Ba06596576_s1	B. atrophaeus	Bacillus atrophaeus or subtilis, subspecies globigii		

* For adenovirus and rhinovirus, two assays are required for full strain coverage. For additional details on each assay, go to thermofisher.com/taqman.

All samples in this clinical research study were tested using our optimized protocol for respiratory tract microbiota profiling, which utilizes a preamplification step for the highest sensitivity with the added benefit of sample conservation. For target preamplification, 5 µL of synthetic template or purified genomic nucleic acid was combined with 2.5 µL Applied Biosystems[™] TagPath[™] 1-Step RT-gPCR Master Mix, CG, and 2.5 µL Applied Biosystems[™] TaqMan[®] PreAmp Pool, Respiratory Tract Microbiota, then reverse-transcribed and amplified for 14 cycles. Preamplified samples were diluted 1:20 with nuclease-free water, then 20 µL of each diluted sample was combined with 50 µL of Applied Biosystems[™] TaqMan[®] Fast Advanced Master Mix, No UNG, plus 30 µL nucleasefree water. Each reaction was transferred to a port on the TaqMan Array Respiratory Tract Microbiota Comprehensive Card, then cards were run on the QuantStudio 12K Flex Real-Time PCR System. Data were analyzed by the instrument software.

For details on sample extraction and running experiments, please refer to the application guide "Respiratory Tract Microbiota Profiling Experiments: TaqMan Assays for respiratory tract microbiota profiling experiments in TaqMan Array Card format" (Pub. No. MAN0017951). (LDR) of the TaqMan Assays for respiratory tract microbiota were evaluated using serial dilutions of the Applied Biosystems[™] TaqMan[®] Respiratory Tract Microbiota Amplification Control, which is a linearized plasmid DNA control containing all target and control sequences. Preamplification and real-time PCR were performed on the amplification control without sample preparation, using the same optimized protocol as used for respiratory tract samples and organism control samples. The amplification control dilution series, with input concentrations ranging from 10⁵ to 0.1 copies/µL, was tested on the TaqMan Array Respiratory Tract Microbiota Comprehensive Card covering all 44 respiratory tract microbiota assays plus control assays (Figure 2).

We achieved high sensitivity (limit of detection, LOD) down to 1–10 copies/µL input per reaction for all respiratory tract microbiota assays, with minimal variation at lower concentrations. All assays demonstrated a LDR of 5 orders of magnitude (10⁵ to 1 copies/µL) where R² was greater than 0.99 and PCR efficiency was very close to 100%. Representative LDR data plots are shown for four viral and two bacterial targets in Figure 3, with the standard error bars indicating low variation between replicates. Utilizing a preamplification step improved sensitivity as much as 100–1,000x per assay compared to a 1-step RT-qPCR protocol without a preamplification step. This improvement was observed without sacrificing specificity (data not shown).

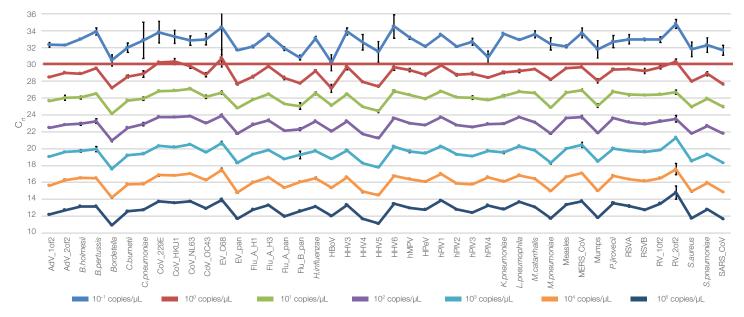


Figure 2. Limit of detection using the TaqMan Respiratory Tract Microbiota Amplification Control. Serial dilutions of 10^5 copies/µL down to 0.1 copies/µL of the amplification control were tested using the optimized preamplification plus real-time PCR protocol with the TaqMan Array Respiratory Tract Microbiota Comprehensive Card containing all 44 respiratory tract microbiota assays. Two technical replicates were generated for each concentration. All assays were able to detect down to 1–10 copies/µL of target input using a C_{rt} threshold value of 30. Note: the RV_20f2 assay shows higher C_{rt} values and standard deviation than the RV_10f2 assay as it is mismatched by 1 nucleotide with the amplification control rhinovirus sequence.

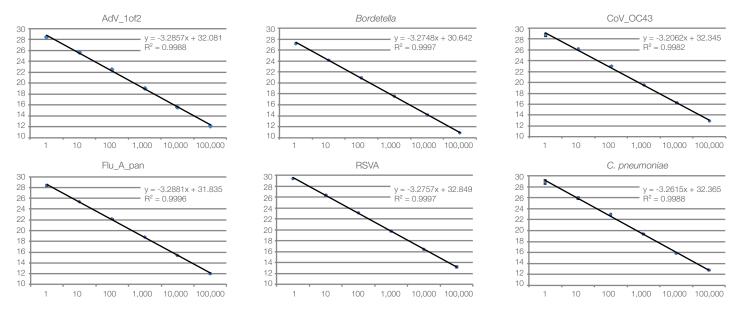
Results

Sensitivity and linear dynamic range of TaqMan Assays The sensitivity, efficiency, and linear dynamic range

High specificity of TaqMan Assays for respiratory tract microbiota

TaqMan Assays for respiratory tract microbiota have undergone rigorous bioinformatic analysis to help ensure maximum strain coverage while minimizing the potential for off-target cross-reactivity. Each assay has been tested with on- and off-target genomic RNA or DNA isolated from target organisms (nucleic acid acquired from ATCC) in our inclusivity panel (Table 2). The inclusivity panel covers 29 of 42 (69%) respiratory tract microbiota targets; missing from this analysis were unculturable and biosafety level 3 and 4 organisms.

The respiratory tract microbiota assays provided highly specific results when tested simultaneously against the available subset of respiratory tract microbial genomes using the TaqMan Array Respiratory Tract Microbiota Comprehensive Card (Table 3). Testing against nontarget organisms in an exclusivity panel also demonstrated no cross-reactivity of the respiratory tract microbiota assays with closely related species and other respiratory microbes (Table 4 and data not shown).


Accurate identification of respiratory tract microbes in respiratory samples for clinical research

The sensitivity, specificity, and accuracy of the assays on the TaqMan Array Respiratory Tract Microbiota Comprehensive Card was further examined by testing with 180 purchased clinical research samples that were previously characterized for respiratory tract microbes by other molecular methods. Samples covering 16 key respiratory viruses were included in this study.

Table 2. Respiratory tract microbiotainclusivity controls.

Organism type	Nucleic acid type	Organism	ATCC ID*				
		Adenovirus C	VR-846D				
		Adenovirus E	VR-1572D				
	DNA	HHV3	VR-1367DQ				
	DNA	HHV5	VR-538DQ				
		Human coronavirus 229E	VR-740D				
		Human coronavirus 0C43	VR-1558D				
		Enterovirus D68	VR-1823D				
		Enterovirus 71	VR-1432DQ				
		Rhinovirus B	VR-1663DQ				
Virus		Influenza A virus (H1N1)	VR-1736D				
		Influenza B virus (BY)	VR-1813D				
		Measles virus	VR-24D				
	RNA	Mumps virus	VR-106D				
		hPIV1	VR-94D				
		hPIV2	VR-92D				
		hPIV3	VR-93D				
		hPIV4b	VR-1377D				
		RSVA	VR-1540D				
		RSVB	VR-1803D				
		Bordetella bronchiseptica	BAA-588D-5				
		Bordetella holmesii	51541_D2				
		Bordetella parapertussis	BAA-587D-5				
		Bordetella pertussis	9797D-5				
		Chlamydophila pneumoniae	VR-1360D				
Bacterium	DNA	Haemophilus influenzae	51907DQ				
Dacterium	DNA	Klebsiella pneumoniae	700721DQ				
		Legionella pneumophila	33152DQ				
		Moraxella catarrhalis	25240D-5				
		Mycoplasma pneumoniae	15531D				
		Staphylococcus aureus	BAA-1718DQ				
		Streptococcus pneumoniae	700669DQ				

* Genomic nucleic acid controls were sourced from ATCC.

Figure 3. LDR results for representative TaqMan Assays targeting respiratory tract microbiota. The dilution series data of the TaqMan Respiratory Tract Microbiota Amplification Control shown in Figure 2 were used to calculate the LDR for the respiratory tract microbiota assays using dilutions of 10⁵ copies/µL down to 1 copy/µL. Data plots for 6 representative assays are shown. All assays demonstrated an LDR of 5 orders of magnitude where R² was greater than 0.99 and PCR efficiency was approximately 100%.

Table 3. Specificity testing of respiratory tract microbiota assays with the ATCC inclusivity panel.*

	Adenovirus C	Adenovirus E	Bordetella holmesii	Bordetella pertussis	Bordetella parapertussis	Bordetella bronchiseptica	Chlamydophila pneumoniae	Coronavirus 229E	Coronavirus OC43	Enterovirus D68	Enterovirus 71	Influenza A (H1N1)	Influenza B	Haemophilus influenzae	HHV3	HHV5	PIVI	PIV2	PIV3	PIV4b	Klebsiella pneumoniae	Legionella pneumophila	Moraxella catarrhalis	Mycoplasma pneumoniae	Measles	Mumps	RSVA	RSVB	Rhinovirus B	Staphylococcus aureus	Streptococcus pneumoniae
AdV_1of2	21.13																														
AdV_2of2		21.82																													
B.holmesii			20.19																												
B.pertussis				21.99																											
Bordetella				20.17	20.46	20.53																									
C.pneumoniae							18.39																								
CoV_229E								25.25																							
CoV_OC43									18.90																						
EV_D68										18.75																					
EV_pan										26.22	24.43																				
Flu_A_H1												19.41																			
Flu_A_pan												17.25																			
Flu_B_pan													18.45																		
H.influenzae														21.17																	
ННУЗ															17.91																
HHV5																16.81															
hPIV1																	19.68														
hPIV2																		18.92	2												
hPIV3																			18.75												
hPIV4																				18.97											
K.pneumoniae																					18.92										
L.pneumophila																						19.16									
M.catarrhalis																							18.46								
M.pneumoniae																								17.43							
Measles																									19.66						
Mumps																										19.37					
RSVA																											17.73				
RSVB																												19.93			
RV_1of2										21.53	21.82																		19.44		
RV_2of2																													21.50		
S.aureus																														16.30	
S.pneumoniae																															17.09

* Genomic RNA or DNA at 10^3 copies/µL from 31 ATCC cultivatable respiratory tract microbes were simultaneously screened against all 44 assays on the TaqMan Array Respiratory Tract Microbiota Comprehensive Card. The microbial genomic RNA or DNA samples are listed in columns and the target assays are listed in rows. The assays specifically amplified their intended targets, and no significant off-target amplifications were detected. The shaded boxes contain the C_n values (C_q calculated by relative threshold method) for each assay–sample combination passing recommended filtration criteria for respiratory tract microbiota assays run with the preamplification plus qPCR protocol (where C_n <30, AmpScore ≥1.2, and C_q confidence ≥0.7). Note that the *Bordetella pertussis* sample is detected by both the *B.pertussis* and *Bordetella* assays and the influenza A (H1N1) sample is detected by both the Flu_A_H1 and Flu_A_pan assays. The enterovirus D68 sample is detected by both the EV_pan assay, which does not detect all enterovirus D68 samples. The RV_1of2 assay detects the rhinovirus B sample as well as both enterovirus D68 and 71 samples. This is expected behavior, as the RV_1of2 assay detects both rhinovirus and enterovirus strains whereas the EV_D68 and EV_pan assays are specific for enterovirus strains. Concordance analysis demonstrated a high positive percent agreement of over 97% between the TaqMan Assays for respiratory tract microbiota and other molecular platforms (Table 5).

The set of clinical research samples that was tested on the TaqMan Array Card platform was also tested with the respiratory tract microbiota assays on the high-throughput Applied Biosystems[™] OpenArray[™] platform. Results were highly concordant between tests, demonstrating functional equivalence of the respiratory tract microbiota assays between platforms. Concordance analysis was conducted for 400 samples that had been characterized by other on-market nucleic acid tests. A high positive percent agreement of over 97% with other detection platforms was observed (for more information, see the application note "A complete workflow solution for detecting respiratory tract microbiota using Applied Biosystems OpenArray technology").

Organism type	Nucleic acid type	Organism	ATCC ID*	Near neighbor or environment
	DNA	Vaccinia virus	VR-1508D	Human respiratory pathogen
Virus	RNA	Rubella virus	VR-315D	Human respiratory pathogen
	RINA	Rotavirus	VR-2018DQ	Human gastroenteric pathogen
		Psychrobacter cryohalolentis	BAA-1226D-5	Moraxella catarrhalis
		Pasteurella multocida	700806	Haemophilus influenzae
		Raoultella planticola	33531	Klebsiella pneumoniae
		Achromobacter xylosoxidans	27061	Bordetella bronchiseptica, pertussis, parapertussis, or holmesii
		Blastomyces dermatitidis	26199D-2	Human respiratory pathogen
Bacterium	DNA	Corynebacterium diphtheriae	700971D-5	Human respiratory pathogen
		Burkholderia cepacia	25416D-5	Human respiratory pathogen
		Neisseria meningitidis	700532D-5	Human respiratory pathogen
		Cryptococcus neoformans	MYA-565D-5	Human respiratory pathogen
		Staphylococcus saprophyticus	15305D-5	Human respiratory pathogen
		Streptococcus mitis	49456D-5	Human respiratory pathogen
Fungus		Aspergillus fumigatus	1022D	Human respiratory pathogen

Table 4. Respiratory tract microbiota exclusivity controls.

* Genomic nucleic acid controls were sourced from ATCC.

Table 5. Clinical research sample testing: agreement with other nucleic acid test methods.

Pathogen	True positive*	False negative**	Positive percent agreement
Adenovirus	20	1	95.24%
Coronavirus 229E	2	0	100.00%
Coronavirus HKU1	1	0	100.00%
Coronavirus OC43	1	0	100.00%
Influenza A	4	0	100.00%
Influenza A/H1	6	0	100.00%
Influenza A/H3	16	0	100.00%
Influenza B	16	0	100.00%
hMPV	16	1	94.12%
hPIV1	10	1	90.91%
hPIV2	10	0	100.00%
hPIV3	12	0	100.00%
RSV	6	0	100.00%
RSVA	17	1	94.44%
RSVB	16	1	100.00%
Rhinovirus, enterovirus	27	0	100.00%
Total	180	5	97.30%

* Call from the vendor.

** Call not detected by the TaqMan Array Card assay.

The TagMan Assay panel for respiratory tract microbiota simultaneously screens 42 respiratory organisms and includes other viral, bacterial, and fungal assays that are not included in the reference tests in our concordance study. In many of the clinical research samples, the respiratory tract microbiota assays detected additional targets that were either present or not present in the reference tests. To determine the veracity of these calls, Sanger sequencing was performed on over 200 additional targets as well as on concordant target controls. However, 50 sequencing attempts did not generate sequencing results, either because the target was present in low amounts (e.g., high C_{rt} values) or the sequencing primers did not detect the target. All 172 targets that generated sequencing results confirmed the identities of the targets that were detected by the respiratory tract microbiota assays (data not shown).

In addition to testing with clinical research samples, the TaqMan Array Respiratory Tract Microbiota Comprehensive Card was tested with whole-organism proficiency test controls from Quality Control for Molecular Diagnostics (QCMD). Three panels of QCMD samples, which consisted of both negative and positive controls covering 17 common respiratory pathogens, were used to evaluate the accuracy of the TaqMan Assays (Table 6). All control organisms were detected for 100% concordance.

Conclusions

- Our Applied Biosystems[™] real-time PCR solution for respiratory tract microbiota detection provides an accurate, reliable workflow for identification of a broad range of common and opportunistic respiratory pathogens
- TaqMan Assays for respiratory tract microbiota demonstrated accurate performance in numerous tests for sensitivity and specificity with different sample types
- The MagMAX Viral/Pathogen Nucleic Acid Isolation Ultra Kit, optimized for microbial sample preparation, provides an automated solution for extracting total nucleic acid that can be analyzed using the panel of TaqMan Assays for respiratory tract microbiota
- Qualified TaqMan Assays for respiratory tract microbiota in combination with easy-to-use microfluidic TaqMan Array Cards provides a low-cost solution for simultaneous detection of viral, bacterial, and fungal pathogens in respiratory tract infections

QCMD control identity	Sample count	TaqMan Array Card results
ADV type 1	1	Detected
Coronavirus NL63	2	Both detected
Coronavirus OC43	1	Detected
Enterovirus 68	1	Detected
hMPV	3	All detected
Influenza type A (H1N1)	1	Detected*
Influenza type A	3	All detected
Influenza type B	2	Both detected
Parainfluenza type 1	1	Detected
RSV type A	2	Both detected
RSV type B	2	Both detected
Rhinovirus	2	Both detected
Bordetella pertussis	1	Detected
Haemophilus influenzae	2	Both detected
Leginella pneumophila	2	Both detected
Mycoplasma pneumoniae	1	Detected
Streptococcus pneumoniae	2	Both detected
Negative	3	Confirmed
Overall	32	All detected

 Table 6. TaqMan Array Respiratory Tract Microbiota Comprehensive Card tested with QCMD proficiency test

 control samples.

* The influenza type A (H1N1) sample was detected just by the Flu_A_pan assay and not the Flu_A_H1 assay. Flu assays were developed to strains from 2013 onward to capture circulating strains; the Flu_A_H1 assay detects the 2009 pandemic H1N1 strain but may not detect other older strains. Sanger sequencing analysis of the QCMD influenza type A (H1N1) sample showed sequence mismatches with the Flu_A_H1 assay probe binding site, explaining the lack of detection. The sequence matched that of an influenza A H1 strain from 2008 that was not considered in assay design.

applied biosystems

Ordering information

Product	Quantity	Cat. No.
TaqMan Array Cards		
TaqMan Array Respiratory Tract Microbiota Comprehensive Card	10 cards	A41238
Custom TaqMan Gene Expression Array Cards, format 24	10 cards	4342249
Custom TaqMan Gene Expression Array Cards, format 48	10 cards	4342253
Controls and master mixes		
TaqPath 1-Step RT-qPCR Master Mix, CG	5 x 1 mL	A15299
TaqMan PreAmp Pool, Respiratory Tract Microbiota, 4X	1 x 1 mL	A41374
TaqMan Fast Advanced Master Mix, No UNG	1 x 5 mL	A44360
TaqMan Universal RNA Spike In/Reverse Transcription (Xeno) Control	5 x 200 μL	A39179
TaqMan Universal Extraction Control Organism (B. atrophaeus)	3 vials/kit	A39180
TaqMan Respiratory Tract Microbiota Amplification Control	5 x 50 μL	A39178
Instrumentation and sample preparation		
KingFisher Flex Purification System with 96 Deep-Well Head	1 system	5400630
MagMAX Viral/Pathogen Ultra Nucleic Acid Isolation Kit	100 preps	A42356
QuantStudio 7 Flex Real-Time PCR System, TaqMan Array Card block	1 system	4485696
QuantStudio 12K Flex Real-Time PCR System, TaqMan Array Card block	1 system	4471089
Veriti 96-Well Thermal Cycler (or equivalent thermal cycler)	1 system	4375786

Find out more at thermofisher.com/rtm