AcroSeal Packaging

An Application Guide

Solvents and Reagents
Drier for Longer

Introduction

Organic reagents have a wide series of applications in drug discovery, agrochemical research, flavors and fragrances, diagnostics, and NMR analysis. Reactions often involve the use of airand moisture-sensitive solvents, pyrophoric, and hazardous reagents. Our Acros Organics™ AcroSeal™ packaging is an industry leading packaging solution for safe handling of these types of materials.

This brochure provides an overview of the important reactions that could benefit from AcroSeal packaging for your reagents.

AcroSeal Packaging Provides...

PERFORMANCE

The specially designed multi-layer septum ensures a better re-seal thus minimizing atmospheric exposure and protecting the quality of your air-and moisture-sensitive solvents and reagents.

CONVENIENCE

A wide range of pre-prepared reagents in solution are available, reducing the risks, time, and effort of making your own.

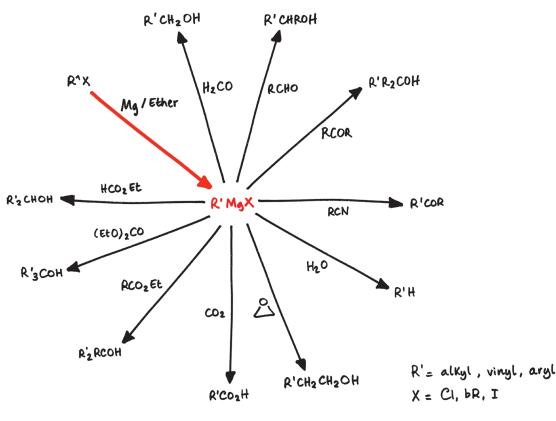
SAFETY

Our AcroSeal cap system ensures you can transfer the contents of the bottle safely into your reaction vessel, minimizing your exposure to potentially hazardous chemicals.

Contents

	Page No.
Introduction	2
Performance	3
Grignard Reagents	4
Convenience	5-6
Organolithium Reagents	7
Safety	8
Hydride Reducing Reagents	9
Other AcroSeal Packaged Products	10
Top Tips for Using AcroSeal Packaging	11

When carrying out synthetic organic chemistry, exposing many solvents and reagents to air and moisture inhibits their ability to perform properly and can cause some, if not all, of the following issues:

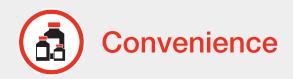

- A failed synthesis
- Poor yield
- Greater number of by-products/impurities
- More challenging purification

Our AcroSeal packaging solution is innovative and simple as we endeavor to:

- · Pack the product when it is as dry as possible
- Make it easy to keep it dry when transferring from the packaging into your dry system
- Ensure products stay dry between repeated use

Grignard Reaction

The Grignard reaction is an essential method in the formation of carbon-carbon bonds. In reactions involving Grignard Reagents it is essential to exclude water and air, which rapidly destroy the reagent. To prevent their degradation, we provide sensitive reagents in industry-leading AcroSeal packaging. An example of a reaction that can be severely affected by the presence of water is the grignard reaction.



Grignard Reactions

Grignard Reagents

A selection of our Grignard reagents can be found in the table below.

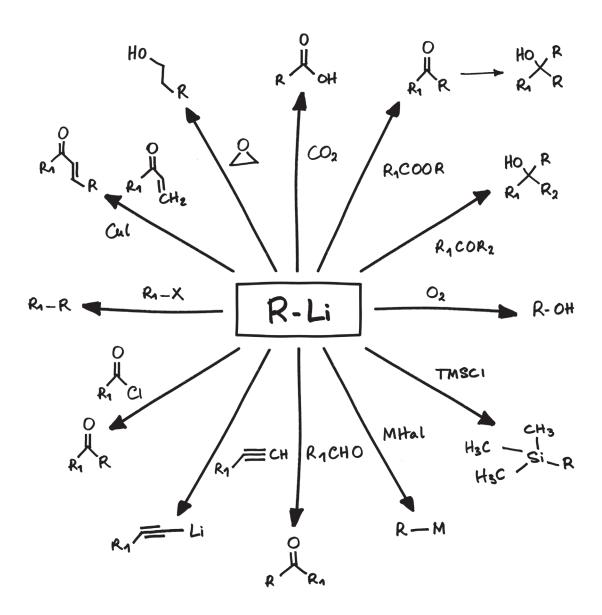
Product Code	Product Name	CAS no.
AC20953	Allylmagnesium bromide, 1M solution in diethyl ether, AcroSeal	1730-25-2
AC20967	Allylmagnesium chloride, 1.7M solution in THF, AcroSeal	2622-05-1
AC38955	Benzylmagnesium chloride, 1.4M solution in THF, AcroSeal	6921-34-2
AC42746	3-Butenylmagnesium bromide, 0.5M solution in THF, AcroSeal	7103-09-5
AC33167	tert-Butylmagnesium chloride, 1.7M solution in THF, AcroSeal	677-22-5
AC39749	3-Chlorophenylmagnesium bromide, 0.5M solution in THF, AcroSeal	36229-42-2
AC44595	Cyclopropylmagnesium bromide, 0.5M solution in 2-MeTHF, AcroSeal	23719-80-4
AC39761	Cyclopropylmagnesium bromide, 0.5M solution in THF, AcroSeal	23719-80-4
AC43190	(1,3-Dioxan-2-ylethyl)magnesium bromide, 0.5M solution in THF, AcroSeal	480438-44-6
AC34729	Ethylmagnesium bromide, 3M in diethyl ether, AcroSeal	925-90-6
AC21047	Ethylmagnesium bromide, 0.9M solution in THF, AcroSeal	925-90-6
AC25257	Ethylmagnesium chloride, 2.7M (25 wt.%) solution in THF, AcroSeal	2386-64-3
AC43912	Ethynylmagnesium bromide, 0.5M solution in THF, AcroSeal	4301-14-8
AC38895	Ethynylmagnesium chloride, 0.6M solution in THF/Toluene, AcroSeal	65032-27-1
AC43303	Heptylmagnesium bromide, 1M solution in diethyl ether, AcroSeal	13125-66-1
AC42775	Isopropenylmagnesium bromide, 0.5M solution in THF, AcroSeal	13291-18-4
AC42678	Isopropylmagnesium bromide, 3M solution in 2-MeTHF, AcroSeal	920-39-8
AC21285	Isopropylmagnesium chloride, 2M solution in THF, AcroSeal	1068-55-9
AC38628	Isopropylmagnesium chloride - Lithium chloride complex, 1.3M solution in THF, AcroSeal	745038-86-2
AC21073	2-Mesitylmagnesium bromide, 1M solution in THF, AcroSeal	2633-66-1
AC37742	4-Methoxyphenylmagnesium bromide, 1M solution in THF, AcroSeal	13139-86-1
AC42741	2-Methylallylmagnesium chloride, 0.5M solution in THF, AcroSeal	5674-01-1
AC18354	Methylmagnesium bromide, 3M solution in diethyl ether, AcroSeal	75-16-1
AC39112	Methylmagnesium bromide, 3.2M solution in 2-MeTHF, AcroSeal	75-16-1
AC37738	Methylmagnesium bromide, 1M solution in THF, AcroSeal	75-16-1
AC25256	Methylmagnesium chloride, 3M (22 wt.%) solution in THF, AcroSeal	676-58-4
AC42740	Methylmagnesium iodide, 3M solution in diethyl ether, AcroSeal	917-64-6
AC43556	2-Methyl-1-propenylmagnesium bromide, 0.5M solution in THF, AcroSeal	38614-36-7
AC43874	Pentafluorophenylmagnesium bromide, 0.5M solution in diethyl ether, AcroSeal	879-05-0
AC43467	1-Propenylmagnesium bromide, 0.5M solution in THF, AcroSeal	14092-04-7
AC42607	1-Propynylmagnesium bromide, 0.5M solution in THF, AcroSeal	16466-97-0
AC37746	(Trimethylsilyl)methylmagnesium chloride, 1.3M solution in THF, AcroSeal	13170-43-9
AC44597	Vinylmagnesium bromide, 1M solution in 2-MeTHF, AcroSeal	1826-67-1
AC20939	Vinylmagnesium bromide, 0.7M solution in THF, AcroSeal	1826-67-1

Freshly preparing anhydrous solvents and reagents for use in chemical synthesis is not a trivial exercise and takes time, specialized equipment, and handling practices. For example, preparing gaseous solutions can involve handling cylinders and distillation.

Glove box to handle air- and moisture-sensitive reagents

Alkyllithium Reagents

The most common members of the alkyllithium family are n-Butyllithium, Methyllithium, and tert-Butyllithium, and these are widely used in organic synthesis. Fresh solutions can be created in the lab, requiring complex, potentially hazardous and time consuming steps, including movement and use of gas cylinders and distillation steps.


Alternatively, AcroSeal packaging provides a wide range of anhydrous solvents and reagents for immediate use, saving you both time and money.

Some examples of their applications are given below:

- **Metallation** Many hundreds of functionalized organolithium compounds have been prepared by the metallation reaction with n-Butyllithium or other alkyllithium compounds.
- Ortho-metallation Metallation of an aromatic ring near a substituent, which acts as a "directed metallation group", is called ortho-metallation.
- Nucleophilic Addition and Substitution Stabilized organolithium compounds like enolates and sulfonyl
 carbanions can react as nucleophiles with alkyl-halogenides and carbonylcompounds in a wide range of
 reactions, including:
 - Alkylation of Alkyl-halogenides
 - Addition to Carbonyl-compounds
 - · Alkylation of Allyl-halogenides
 - Epoxide-Ring Opening
 - Conjugate Addition
 - Addition to Carbon dioxide

- Halogen-Metal Exchange The Halogen-metal exchange reaction was discovered in the late 1930s by Gilman and Wittig. The reaction is often used to prepare vinyl and aryllithium compounds from the more reactive alkyllithium species.
- **Transmetallation** The organolithium compounds are very often used to prepare other metallorganic compounds through the transmetallation reaction.
- Anionic Polymerization A major industrial use of alkyllithium compounds, specifically n-Butyllithium, is the catalysis of the anionic polymerization of butadiene, isoprene, and styrene.

Organolithium Reactions

Organolithium Reagents

A selection of our organolithium reagents can be found in the table below.

Product Code	Product Name	CAS no.
AC37749	n-Butyllithium, 2.2M solution in cyclohexane, AcroSeal	109-72-8
AC21335	n-Butyllithium, 2.5M solution in hexanes, AcroSeal	109-72-8
AC18127	n-Butyllithium, 1.6M solution in hexanes, AcroSeal	109-72-8
AC37893	n-Butyllithium, 2.7M solution in toluene, AcroSeal	109-72-8
AC18754	sec-Butyllithium, 1.3M sol. in cyclohexane/hexane (92/8), AcroSeal	598-30-1
AC39654	tert-Butyllithium, 1.9M solution in pentane, AcroSeal	594-19-4
AC44592	tert-Butyllithium, 2M (18%) solution in heptane, AcroSeal	594-19-4
AC30165	n-Hexyllithium, 33 wt.% solution in n-hexane, AcroSeal	21369-64-2
AC37759	Isobutyllithium, 1.6M solution in heptane, AcroSeal	920-36-5
AC43988	Lithium acetylide ethylenediamine complex, 25 wt.% slurry in toluene, AcroSeal	6867-30-7
AC43455	Lithium aluminium hydride bis(tetrahydrofuran), 1M solution in toluene, AcroSeal	123439-81-6
AC38023	Lithium bis(trimethylsilyl)amide, 0.9M solution in methylcyclohexane, AcroSeal	4039-32-1
AC34567	Lithium bis(trimethylsilyl)amide, 1M sol. in methyl tert-butyl ether, AcroSeal	4039-32-1
AC44611	Lithium bis(trimethylsilyl)amide, 15% in 2-MeTHF/Ethylbenzene, AcroSeal	4039-32-1
AC20955	Lithium bis(trimethylsilyl)amide, 1M solution in THF, AcroSeal	4039-32-1
AC34770	Lithium bis(trimethylsilyl)amide, 1M solution in THF/Ethylbenzene, AcroSeal	4039-32-1
AC44684	Lithium tert-butoxide, 0.9M (8 wt.%) solution in 2-MeTHF, AcroSeal	1907-33-1
AC37931	Lithium tert-butoxide, 2.2M solution in THF, AcroSeal	1907-33-1
AC26883	Lithium diisopropylamide, 2M sol. in THF/n-heptane/ethylbenzene, AcroSeal	4111-54-0
AC43287	Lithium diisopropylamide mono(tetrahydrofuran), 1.5M solution in cyclohexane, AcroSeal	123333-84-6
AC43362	Lithium diphenylphosphide, 0.5M solution in THF, AcroSeal	65567-06-8
AC38017	Lithium ethoxide, 1M solution in ethanol, AcroSeal	2388-07-0
AC39650	Lithium isopropoxide, 3M solution in THF, AcroSeal	2388-10-5
AC33675	Lithium methoxide, pure, 2.2M (10 wt%) solution in methanol, AcroSeal	865-34-9
AC38861	Lithium phenoxide, 0.6M solution in THF, AcroSeal	555-24-8
AC43350	Lithium thiophenolate, 0.6M solution in THF, AcroSeal	2973-86-6
AC17645	Lithium tri-sec-butylborohydride, 1M solution in THF, AcroSeal	38721-52-7
AC37758	Lithium tri-tert-butoxyaluminohydride, 1.1M solution in THF, AcroSeal	17476-04-9
AC45069	Lithium triethylborohydride, 1.7M solution in THF, AcroSeal	22560-16-3
AC38065	Lithium (trimethylsilyl)acetylide, 0.5M solution in THF/hexanes, AcroSeal	54655-07-1
AC43911	Lithium tris[(3-ethyl-3-pentyl)oxy]aluminohydride, 0.5M solution in THF, AcroSeal	79172-99-9
AC18875	Methyllithium, 1.6M sol. in diethyl ether (± 5% w/v), AcroSeal	917-54-4
AC18129	Methyllithium, 2.2M (6wt%) in diethyl ether with LiBr, AcroSeal	332360-06-2
AC44584	Methyllithium, 3% solution in 2-MeTHF/cumene, AcroSeal	917-54-4
AC37745	(Trimethylsilyl)methyllithium, 0.7M (10 wt%) solution in hexanes, AcroSeal	1822-00-0

The highly reactive reagents often required in organic synthesis may be hazardous to use and include compounds that may be pyrophoric, toxic, carcinogenic, mutagenic, corrosive, and odorous, *e.g.*, thiols.

AcroSeal packaging provides a safer solution for handling these reagents by allowing removal of the reagent from the bottle under an inert atmosphere and without exposure to the contents.

Lithium Aluminum Hydride

Lithium aluminum hydride is an example of an extremely pyrophoric reducing agent used in organic synthesis for the reduction of esters, carboxylic acids, and amides.

Lithium Aluminium Hydride Reactions

Hydride Reducing Reagents

A selection of our hydride reducing reagents can be found in the table below.

Product code	Product name	CAS no.
AC20105	Diisobutylaluminum hydride, 1M solution in heptane, AcroSeal	1191-15-7
AC18379	Diisobutylaluminum hydride, 1M solution in hexanes, AcroSeal	1191-15-7
AC20103	Diisobutylaluminum hydride, 1.1M solution in cyclohexane, AcroSeal	1191-15-7
AC20108	Diisobutylaluminum hydride, 1.2M (20 wt.%) solution in toluene, AcroSeal	1191-15-7
AC19949	Lithium aluminum hydride, 1M solution in THF, AcroSeal	16853-85-3
AC37732	Lithium aluminum hydride, 2.4M solution in THF, AcroSeal	16853-85-3
AC38557	Lithium aluminum hydride, 3.5M (15 wt.%) solution in toluene/THF, AcroSeal	16853-85-3
AC19951	Lithium aluminum hydride, 4M solution in diethyl ether, AcroSeal	16853-85-3
AC43455	Lithium aluminum hydride bis(tetrahydrofuran), 1M solution in toluene, AcroSeal	123439-81-6
AC42888	Lithium borohydride, 4M (10 wt.%) solution in THF, AcroSeal	16949-15-8
AC37758	Lithium tri-tert-butoxyaluminohydride, 1.1M solution in THF, AcroSeal	17476-04-9
AC17645	Lithium tri-sec-butylborohydride, 1M solution in THF, AcroSeal	38721-52-7
AC43911	Lithium tris[(3-ethyl-3-pentyl)oxy]aluminohydride, 0.5M solution in THF, AcroSeal	79172-99-9
AC20968	Lithium trisiamylborohydride, 1M solution in THF, AcroSeal	60217-34-7
AC20547	Potassium tri-sec-butylborohydride, 1M solution in THF, AcroSeal	54575-49-4
AC18918	Potassium triisopropoxyborohydride, 1M solution in THF, AcroSeal	42278-67-1
AC43091	Sodium bis(2-methoxyethoxy)aluminum hydride, 70 wt.% solution in toluene (approx. 3.5M) , AcroSeal	22722-98-1
AC19113	Sodium borohydride, 0.5M solution in diglyme, AcroSeal	16940-66-2
AC42913	Sodium borohydride, 12% solution in 40% aq. NaOH solution, AcroSeal	16940-66-2
AC37245	Sodium cyanoborohydride, 1M solution in THF, AcroSeal	25895-60-7
AC20003	Sodium triethylborohydride, 1M solution in THF, AcroSeal	17979-81-6
AC42914	Sodium tri-sec-butylborohydride, 1M solution in THF, AcroSeal	67276-04-4

Other AcroSeal Packaged Products

Alongside the aforementioned categories of reagents, a broad range of other products are available in AcroSeal packaging, including:

- Deuterated solvents
- Extra dry solvents
- Organics
- Organometallics
- Reagents in solution

A selection of these reagents can be found in the tables below.

Product code	Product name	CAS no.
Deuterated Sol	vents	
AC21742	Acetonitrile-d3, for NMR, 99.8 atom% D, AcroSeal	2206-26-0
AC42677	Chloroform-d, for NMR, 99.8 atom % D, AcroSeal	865-49-6
AC42693	Deuterium oxide, for NMR, 99.8 atom % D, AcroSeal	7789-20-0
AC43399	Dichloromethane-d2, for NMR, 99.5 atom % D, AcroSeal	1665-00-5
AC42694	Methyl sulfoxide-d6, for NMR, 99.9 atom% D, AcroSeal	2206-27-1
Extra Dry Solve	ents	
AC36431	Acetonitrile, 99.9%, Extra Dry over Molecular Sieve, AcroSeal	75-05-8
AC34846	Dichloromethane, 99.8%, Extra Dry over Molecular Sieve, Stabilized, AcroSeal	75-09-2
AC34843	N,N-Dimethylformamide, 99.8%, Extra Dry over Molecular Sieve, AcroSeal	68-12-2
AC34845	Tetrahydrofuran, 99.5%, Extra Dry over Molecular Sieve, Stabilized, AcroSeal	109-99-9
AC32697	Tetrahydrofuran, 99.85%, Extra Dry, stabilized, AcroSeal	109-99-9
Organics		
AC42727	Chlorodiisopropylphosphine, 96%, AcroSeal	40244-90-4
AC44618	N,N'-Diisopropylcarbodiimide, 99%, AcroSeal	693-13-0
AC42720	Pivaldehyde, 97%, AcroSeal	630-19-3
AC43646	Trioctylphosphine, 90%, technical grade, AcroSeal	4731-53-7
AC44724	Xylenes, 99%, for biochemistry and histology, mixed isomers with ethylbenzene, AcroSeal	1330-20-7
Organometallic	s	
AC30176	Bis(cyclopentadienyl)dimethyltitanium, 5 wt% in toluene, AcroSeal	1271-66-5
AC37756	Diisobutylaluminum chloride, 0.8M solution in heptane, AcroSeal	1779-25-5
AC18379	Diisobutylaluminum hydride, 1M solution in hexane, AcroSeal	1191-15-7
AC37724	Dimethylzinc, 1.2M solution in toluene, AcroSeal	544-97-8
AC18927	Trimethylaluminium, 1M solution in heptane, AcroSeal	75-24-1
Reagents in So	lution	
AC17706	Borane-methyl sulfide complex, 94%, AcroSeal	13292-87-0
AC17508	Borane-tetrahydrofuran complex, 1M solution in THF, Stabilized, AcroSeal	14044-65-6
AC17668	Boron trichloride, 1M solution in methylene chloride, AcroSeal	10294-34-5
AC38836	Hydrogen chloride, 4N solution in 1,4-dioxane, AcroSeal	7647-01-0
AC42879	Potassium tert-butoxide, pure, 1.6-1.7M (20 wt.%) solution in THF, AcroSeal	865-47-4

Top Tips for Using AcroSeal Packaging

To get the best results using AcroSeal packaging, we recommend the following process:

- 1. Puncture the septum
- 2. Withdraw the required amount
- 3. Replace the nitrogen blanket
- 4. Store upright to prevent prolonged product contact with the seal

Advanced tips:

- 1. Prepare the nitrogen balloon in advance and use two balloons, one inside the other
- Purge the doubled balloons with nitrogen three times before use
- Bend the needle as it makes it easier to use and control
- Flush each needle and syringe with nitrogen three times before use

5. Use the reaction flask to flush the syringe and needle prior to use

To get the best results from the septum, we recommend you use 18- to 21-gauge needles and puncture in a clock face pattern to avoid piercing the septum in the same place.

If you require a large amount of solvent, remove the whole cap under an inert atmosphere and decant the desired amount of product from the bottle.

For further tips on how to use AcroSeal packaged products, view our demonstration video at **fishersci.com/AcroSeal** or **fishersci.ca/AcroSeal**.

In conclusion, AcroSeal packaging offers a superior advantage for your organic synthesis by providing quality products, saving you time, and keeping you safer!

To view the full list of AcroSeal packaged products visit fishersci.com/AcroSeal or fishersci.ca/AcroSeal

To place an order, contact your Fisher Scientific sales representative.

In the United States:

For customer service, call 1-800-766-7000 To fax an order, use 1-800-926-1166 To order online: fishersci.com

In Canada

For customer service, call 1-800-234-7437 To fax an order, use 1-800-463-2996 To order online: fishersci.ca

© 2018 Thermo Fisher Scientific Inc. All rights reserved.

Trademarks used are owned as indicated at fishersci.com/trademarks.