Point of Care Molecular Testing

Streamlining Cancer Care from the Anatomic Pathologist's Office

Dr. Parneet K. Cheema

Medical Oncology

Dr. Brandon S. Sheffield

Anatomic Pathology

Speaker Information and Disclosures

Disclosures, Dr. B Sheffield

Consulting/Advisory Boards/Honoraria:

Astra Zeneca, Biocartis, Boehringer-Ingelheim, Eli Lily EMD Serrono, Janssen, Merck, Novartis, Pfizer, Roche, Thermo Fisher.

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text, and material represent they have the rights to do so.

Speaker was provided monetary remuneration by Thermo Fisher Scientific for this presentation.

Objectives

1

2

Foster an appreciation for the role of ancillary biomarker testing in the treatment of cancer patients.

Appreciate how delays in test results can adversely affect cancer care.

3

Identify areas within your own lab or network that impede biomarker results.

4

Explore how existing and novel techniques can help support oncology practice within your centre.

Current state

1 Cancer is diagnosed by an anatomic pathologist

2

Cancer-related testing is requested by a medical oncologist

Biomarker testing is performed in a separate molecular facility

Net effect

turnaround time: 64 days

Biomarkers available at oncology consult: 17%

Consequences of Inefficient Biomarker Testing

The mortality rate of untreated advanced NSCLC is 4% per week¹

Median life expectancy for stage IV NSCLC is 16 weeks²

1. Stewart, D, et al. The cost of delaying therapy for advanced non-small cell lung cancer (NSCLC): a population kinetics assessment. 2020 AACR 18(S16):5489.

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors

3.2. Expert consensus opinion: Laboratories with average turnaround times beyond two weeks need to make available a more rapid test–either in house or through a reference laboratory–in instances of clinical urgency.

3.1: Expert consensus opinion: EGFR and ALK results should be available within two weeks (10 working days) of receiving the specimen in the testing laboratory.

3.3. Expert consensus opinion: Laboratory departments should establish processes to ensure that specimens that have a final histopathological diagnosis are sent to outside molecular pathology laboratories within 3 working days of receiving requests and to intramural molecular pathology laboratories within 24 hours.

FIGURE 2.9 Age-standardized mortality rates (ASMR) for selected* cancers, females, Canada, 1984–2019

Canadian Société Cancer canadienne Society du cancer

Government of Canada

Gouvernement du Canada

DIAGNOSIS

```
BREAST (RIGHT, 7 O'CLOCK), NEEDLE BIOPSY:
```

- INVASIVE DUCTAL CARCINOMA.
- Preliminary grade: 2 (tubules 3, nuclei 2, mitoses 1).
- Biomarkers:

ER: POSITIVE (3+ staining in 100% of tumor nuclei; Allred 8). PR: POSITIVE (3+ staining in 100% of tumor nuclei; Allred 8). HER2: negative (IHC 1+).

DIAGNOSIS

BREAST (LEFT, LESION A), NEEDLE BIOPSY:

- INVASIVE DUCTAL CARCINOMA.
- 1. Preliminary grade: 3 (tubules 3, mitoses 3, nuclei 3).
- 2. Biomarkers:

ER: negative (no staining present, no internal control present; Allred 0). PR: negative (no staining present, no internal control present; Allred 0). HER2: negative (IHC 0).

Ki67: HIGH (nearly 100% tumor cell labelling).

COMMENT: The tumor shows a triple negative (ER-/PR-/HER2-) immunophenotype. No internal control is present for ER and PR stains, repeat testing on a subsequent specimen is recommended. Clinical correlation is required in determining the need for BRCA1/2 testing.

Point of care

For anatomic pathologists

Immunohistochemistry as a Practical Tool in Molecular Pathology

Point of care

For anatomic pathologists

Cancer diagnosis with biomarkers

Oncology consult

PD-L1: low-level expression (tumor proportion score 1-49%). - Estimated tumor proportion score: 5% ALK: negative. BRAF V600E: negative. ROS: nevative.

INTERPRETATION: The sample demonstrates an activating mutation in the EGFR gene leading to the p. Leu858Arg protein change. The alteration is amenable to treatment with EGFR tyrosine kinase inhibitor therapy, if clinically indicated.

DIAGNOSIS

- A. COLON (RECTOSIGMOID), ANTERIOR RESECTION:
 - INVASIVE ADENOCARCINOMA.
 - 1. Moderately differentiated (low-grade).
 - Completely excised.
 - Proximal, distal, and radial margins clear.
 - Please see comment.
 - 3. Carcinoma invades through the mucularis propria, into pericolonic fat.
 - 4. Fifteen lymph nodes are identified.
 - Three tumor deposits are identified.
 - No definite nodal tissue is associated with the deposits.
 - Largest deposit measures 3.5 cm (see comment).
 - pN1c
 - No metastasis is identified within the 15 nodes (0/15).
 - 5. The tumor shows intact (wild-type) expression of MMR proteins.
 - 6. No muation is identified in KRAS, NRAS, or BRAF (see below).

DIAGNOSIS

LYMPH NODE (7), BIOPSY:

POSITIVE FOR METASTATIC MELANOMA.

COMMENT: The specimen contains malignant epithelioid-appearing cells. Pigment is present, and this is favoured to represent anthracosis. By immunohistochemistry, the lesional cells show strong and diffuse immunoreactivity for SOX10. There is no immunoreactivity identified for TTF1 or p40. The features support a diagnosis of metastatic melanoma. An activating BRAF mutation has been identified (see below).

But what about the rest?

KRAS, MET, ERBB2, RET, NRG1 ...

The benefits of NGS in your institution

Comprehensive and actionable results, communicated clearly from one source Results in one report within days, not weeks Can be customized to the materials present at your centre: EBUS, surgical, etc. Cost saving for healthcare system, hospital, and patient

Point of care

Next-generation sequencing (NGS)

Under development Point of care NGS

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	Not detected	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	MET exon 14 skipping, MET positive		

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
PIK3CA	p.(E545K)	c.1633G>A	COSM763	chr3:17893609	1 48.18%	NM_006218.4	missense
MET	p.(?)	c.3082+1G>T	COSM6108462	chr7:11641204	4 100.00%	NM_001127500.3	unknown
TP53	p.(G245C)	c.733G>T	COSM11081	chr17:7577548	99.65%	NM_000546.5	missense
Gene	Fusions (RNA)	Variant ID			00110		
MET-MET		MET-MET.M13M15.1	l		-ocus chr7:116411708 - c	hr7:116414935	

What's good for patients also saves money

Reduced oncology visits

Reduced number of times a pathologist assesses any given case

Elimination of:

- Extra accessioning
- Additional reporting / transcription
- Shipping

Conclusions

Anatomic pathologists play a critical role in cancer care – diagnostics

The role of the pathologist in treatment determination is under appreciated

3

Introducing point of care testing to the pathology lab, including IHC, and NGS can have a deep and meaningful impact on patient care

The role of the pathologist is evolving:

The pathologist is more than simply a diagnostician, but a medical expert charged with the task of integrating all available laboratory data to support patients through their journey

Point of Care Molecular Testing Clinician Perspective

Dr. Parneet K. Cheema, HBSc, MD, MBiotech, FRCPC Assistant Professor, University of Toronto Head of Medical Oncology/Hematology Head of Cancer research William Osler Health System

@drcheema_cancer

Disclosures

Advisory board/Honorarium:

AstraZeneca, Novartis, Takeda, EMD serono Bristol Myers Squibb, Hoffmann La Roche, Pfizer, Merck

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text, and material represent they have the rights to do so.

Speaker was provided monetary remuneration by Thermo Fisher Scientific for this presentation.

Overview

Review the evolving uses of molecular testing in treating patients with cancer, using lung cancer as the example

Clinical impact of point of care molecular testing

2

Evolving role of close pathology and molecular oncology collaboration

3

Molecular profiling is standard of care for patients with advanced NSCLC

Up to 60% of lung adenocarcinoma have a known oncogenic driver mutation

ASCO & NCCN recommendations for molecular oncogenic driven NSCLC

1. Hanna N, Johnson D, Temin S, et al. J Clin Oncol. 2017;35(30):3484-3515. (ASCO)

2. Non-small Cell Lung Cancer Version 1.2019. National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf Accessed Nov 15, 2018.

NCCN only

Canadian guidelines on biomarker testing in NSCLC

Molecular profiling is standard of care for patients with advanced NSCLC

At time of diagnosis

NGS can be more sensitive than other tests

60M, never smoker, adenocarcinoma NSCLC

EGFR negative, ALK negative, PD-L1 1-49%

EGFR Mutational Analysis: No mutation detected, wild-type EGFR allele

High degree of suspicion

NGS can be more sensitive than other tests Single nucleotide variants: EGFR ENSP00000275493.2:p.Gly719Cys (ENST00000275493.2:c.2155G>T) Insertions/deletions: No reportable INDELs with known clinical significance were detected. Copy number variants: No reportable CNVs with known clinical significance were detected. INTERPRETATION: POSITIVE for variant(s) in EGFR.
--

Molecular profiling in NSCLC is evolving

Reevaluate throughout cancer journey "Resistance mutations" "Discovery of new mutations"

Mechanisms of acquired resistance to 1st/2nd gen EGFR TKIs

The most common acquired resistance mechanisms are¹:

 $\overline{}$

Target gene modification (EGFR)

Alternative pathway activation (HER2, MET, BRAF, PIK3CA)

Histological or phenotypic transformation (EMT or SCLC)

Targeting T790M resistance mutation with osimertinib in T790M+ NSCLC improved outcomes compared to chemotherapy

	Progression Free Survival (Months)
Osimertinib	10.1
Platinum-pemetrexed	4.4

Hazard ratio for disease progression or death, 0.30 (95% Cl, 0.23–0.41) P<0.001

Mok TS et al. N Engl J Med. 2017;376(7):629-640; ESMO ASIA 2019

Population: intent-to-treat

PFS defined as time from randomization until date of objective disease progression or death. Progression included deaths in absence of RECIST progression. Tick Marks indicate censored data; CI, confidence interval; mPFS, median progression free survival

ASCO and NCCN recommendations for molecular oncogenic-driven NSCLC

1. Non-small Cell Lung Cancer Version 1.2019. National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf Accessed Nov 15, 2018.

2. Hanna N, Johnson D, Temin S, et al. J Clin Oncol. 2017;35(30):3484-3515. (ASCO)

NCCN only

Multiple ALK inhibitors for treatment of ALK+ NSCLC How do you select the right drug for the patient?

^aApproved in Canada, the European Union, and the United States; ^bApproved in Canada and the United States. ALK, anaplastic lymphoma kinase; NSCLC, non–small cell lung cancer; TKI, tyrosine kinase inhibitor.

Secondary mutations can arise in the ALK tyrosine kinase domain

ALK, anaplastic lymphoma kinase; ATP, adenosine triphosphate. Hallberg B, et al. *Nat Rev Cancer*. 2013;13:685-700. Katayama R, et al. *Clin Cancer Res*. 2015;21:2227-2235.

Variations in sensitivities to ALK-resistance mutations

EML4-ALK mutation	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib
V1	S	S	S	S	S
C1156Y	l.	S	S	S	S
I1171N	I.	S	R	S	S
l1171S	I.	S	l I	S	S
I1171T	I.	S	S	S	S
F1174C	l.	S	S	S	S
L1196M	R	S	l I	S	S
L1198F	S	l. I	S	S	S
G1202R	R	I.	R	I.	S
G1202del	I.	l I	I	l.	s
D1203N	I.	S	S	S	S
E1210K	S	S	S	S	S
G1269A	I.	S	S	No data	S
D1203N + F1174C	R	R	I	I	I
D1203N + E1210K	I.	l l	I	l l	S

L1198F/C1156Y is lorlatinib resistant but crizotinib sensitive ALK mutation

I, intermediate (IC₅₀ > 50 < 200 nmol/L); R, resistant (IC₅₀ \ge 200 nmol/L); S, sensitive (IC₅₀ \le 50 nmol/L)

Should we be rebiopsing patients for resistance mutations??

Bui KT, Cooper WA, Kao S, Boyer M.Targeted Molecular Treatments in Non-Small Cell Lung Cancer: A Clinical Guide for Oncologists. J Clin Med. 2018 Jul 31;7(8). Gainor JF, Dardaei L, Yoda S, et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016 Oct;6(10):1118-1133.

35M with ROS1+ NSCLC on crizotinib

March 2016

October 2017

October 2017

ROS1, NSCLC, and evolving role of NGS?

Balancing limited tissue with the growing number of mutations to be tested

"A new responsibility for pathologists ... is to manage small specimens strategically so there is sufficient tissue preserved for molecular studies."³

*Next generation sequencing preferred for detection, according to CAP/IASLC/AMP⁵

1. Salgia R. Future Oncol 2015; 11(3):489-500. 2. Daoud A, Chu QS. Front. Oncol. 2017; 7:222. 3. Travis WD, Brambilla E, Nogushi M, et al. Arch Pathol Lab Med 2013; 137:668–684. 4. Lindeman NI, Cagle PT, Beasley MB, et al. J Thorac Oncol. 2013;8(7):823–859. 5. Lindeman NI, Cagle PT, Aisner DL, et al. J Mol Diagn. 2018; 20(2):129-159. (CAP/IASLC/AMP)

Role of plasma based NGS advancing access to broad molecular testing

30% of patients have **inadequate tumour** tissue for molecular analysis at diagnosis

Repeat biopsies are **not feasible ~20%** of patients with advanced NSCLC

~25% repeat biopsies fail to yield sufficient material for genomic analysis

Blood-based NGS has the potential to overcome some of the limitations associated with tissue collection and testing, which may enable clinicians to offer more effective personalised therapies

Potential clinical applications of liquid biopsy and circulating DNA

Liquid biopsy is a **non-invasive**, easily repeatable sampling approach that collects peripheral blood containing cfDNA for analysis.¹

ctDNA is an established surrogate marker for monitoring disease burden and anticancer therapy response and has many other **possible clinical applications**.^{2,3}

cfDNA, cell free DNA; ctDNA, circulating tumour DNA; DNA, deoxyribonucleic acid

- 1. Malapelle U, et al. Transl Lung Cancer Res 2016;5(5):505-10.
- 2. Heitzer E, et al. Clin Chem 2015;61(1):112-23.
- 3. Busser B, et al. *Biomed Res Int* 2017;5986129:1-8.
- 4. Lim C, Sekhon HS, Cutz JC, et al. Curr Oncol. 2017; 24(2):103-110

Optimal state – point of care molecular testing

Cancer diagnosis with biomarkers

Oncology consult

In-house biomarker testing prevented missed opportunity for treatment

Diagnosed w/ squamous cell NSCLC but was a non-smoker

EGFR testing <24 hours of seeing Oncologist

In 3 business days from seeing oncologist, patient was on targeted treatment

10 days later...

At this timepoint, with sending testing out, patient would have still been waiting for biomarker results

Timely biomarker results allows for appropriate treatment

55F with ALK + NSCLC

Started on targeted therapy instead of radiation to the whole brain +/- surgery

17 months after starting targeted therapy, complete response to brain lesion

No radiation or surgery was done

Point of care molecular testing

One report for diagnostic and molecular results optimizes treatment selection

72F Asian, life-time non smoker

Malignant pleural effusion, pulmonary metastases

Adenocarcinoma:

- Driver mutations: EGFR/ALK/ROS1 negative
- Biomarkers: PDL1 >50%

Gene	Alteration
TP53	E17fs*23
TP53	R273H
MET	splice site 3022_3028+14del21
MET /ariants of Unkn	splice site 3022_3028+14del21 own Significance Identified
MET /ariants of Unkn Gene	splice site 3022_3028+14del21 own Significance Identified Alteration
MET /ariants of Unkn Gene ERBB2	splice site 3022_3028+14del21 own Significance Identified Alteration 1740S

Patient would get immunotherapy based on this information

Point of care NGS is needed to offer most effective therapy for patients

Case – impact of piecemeal broad molecular testing results

9 46F, life-time nonsmoker history presents with persistent cough -> hemoptysis

Imaging shows large lung mass, mediastinal lymphadenopathy, bone metastases, and 1.1 cm brain metastasis; non squamous NSCLC

3) EGFR-/ALK-/PD-L1 > 50%

Treatment:

- Platinum doublet x 2 cycles
- Switched to pembrolizumab x 3 months, progression with new malignant pericardial effusion, new bone lesions, and increasing mediastinal adenopathy.
- Referred to Osler for clinical trials
- On presentation: in wheelchair, ECOG 2, on oxygen
- Plan: liquid NGS biopsy, repeat EBUS bx for inclusion into clinical trial

Molecular report

TUMOR TYPE: LUNG NON-SMALL CELLLUNG CARCINOMA (NOS)

Genomic Alterations Identified[†]

RET KIF5B-RET fusion CDK4 amplification – equivocal* TP53 E285K

On selpercatinib

One report of diagnostics and biomarkers

DIAGNOSIS

A. LIVER, EUS BIOPSY:
POSITIVE FOR METASTATIC NON-SMALL CELL CARCINOMA.

B. LYMPH NODE (7), EUS BIOPSY:

- POSITIVE FOR METASTATIC NON-SMALL CELL CARCINOMA.

- Favour pulmonary adenocarcinoma.

LUNG BIOMARKERS:

EGFR :	POSITIVE (exon 20 insertion) - Cellularity: low - Estimated tumor content: 10% - Please see comment.
PD-L1:	low-level expression (tumor proportion score 1-49%).
ALK:	negative.
BRAF V600E:	negative.
ROS:	negative.

Move away from addendums

COMMENT: The tumor shows an activating EGFR exon 20 insertion. This type of activating mutation may show an attenuated response to EGFR inhibitors compared to more classical activating mutations.

Interpretation by oncologists needs to be considered

Genomic Alterations Identified

Gene	Alteration		
TP53	E17fs*23		
TP53	R273H		
MET	splice site 3022_3028+14del21		
Variants of Unknown Significance Identified			
Gene	Alteration		
ERBB2	1740S		
CDK4	K22Q		
OCTION.			

Communication of medical oncology and the lab

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	Not detected	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	MET exon 14 skipping, MET positive		

How do you treat this EGFR mutation?

Driver mutations/alterations and evolving targets with multiple promising agents

EGFR	EGFR T790 M	ALK	ROS1
Osimertinib/ Afatinib/Gefitinib	Osimertinib	Alectinib, Lorlatinib, Certinib, Brigatinib, Ensartinib, Crizotinib	Criztotinib, Lorlatinib, Repotrectinib, Entrectinib

BRAF V600E	NTRK	RET	MET exon 14 skipping
Dabrafenib/Trametinib	Larotrectinib, Entrectinib	Selpercatinib, Pralsetinib	Capmatinib, Tepotinib, Crizotinib

Up and coming targeted therapies for the following drivers

S KRAS G12C

> HER2 mutations/amplifications

Exon 20 insertion

> NRG1

Summary

Timely molecular testing in oncology is critical for treatment decisions

Providing the diagnosis without complete molecular information can lead to delays in treatment or patients receiving suboptimal treatment or no treatment at all.

In house testing is an option to improves turn around time for cancer programs.

Introducing **point of care** testing to the pathology lab, including IHC, and NGS can have a deep and meaningful impact on patient care.

The relationship of the medical oncologist and pathologist is evolving, and increased collaboration is required to optimize outcomes of patients.

The collaboration starts in the lab!

Thank you

Please visit our exhibit for more information or to speak with a representative

68