

We Treat Kids Better

A Pediatric Cancer Research Gene Panel

Timothy J.Triche, M.D., Ph.D.

Outline

Panel Content

- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

A Research Gene Panel to

Identify Genetic Defects in Pediatric Cancer

- Developed with Next-generation sequencing & Amplicon-based NGS library prep technology
- Tumor-specific gene fusions
- Over-expressed genes
- Amplified genes
- Known gene mutations, insertions, and deletions
- Gene mutations identified in the NCI MATCH program as candidate therapeutic targets

*For Research Use Only. Not for use in diagnostic procedures

Designed Specifically for Pediatric Cancer Research

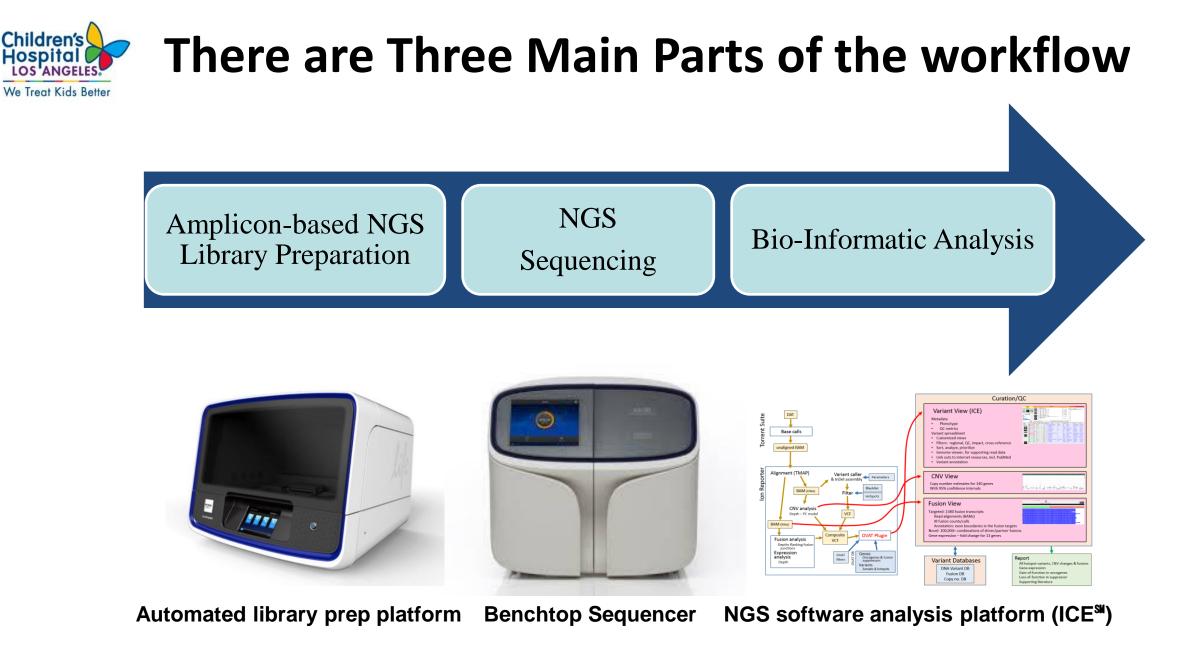
Hotspot (82) CNV (24)			(24)	Full-gene	CDS (44)	I	Fusion a	& Expres	sion (78)
ABL1FGFRABL2FGFRALKFLT3ACVR1GATAAKT1GNATAAKT1GNATAASXL2H3F3BRAFHDACCALRHIST7CBLHRASCCND3IDH1CCR5IDH2CDK4IL7RCICJAK1CREBBPJAK2CRLF2JAK3CSF1RKDM4CSF3RKDRCTNNB1KITDAXXKRASDNMT3AMAP2EGFRMAP2ERBB2MPLERBB4MTOFESR1NCOFEZH2NOTOFASLGNPM1FBXW7NRAS	3 PAX5 PDGF 2 PDGF 1 PIK3C 2 PIK3R A PPM11 3 RAF1 5 RET 8 RAF1 5 RET 8 RAF1 5 RET 8 SETD2 5 SH2B3 5 SH	A CCI CDI CDI CDI EGI CDI EGI FGI FGI FGI FGI FGI FGI FGI FGI FGI F	AF ND1 K4 K6 FR BB2 BB3 FR1 FR2 FR3 FR4 1 2 TR AS M2 M4 T C CN GFRA 3CA Unique 0 amplie	cons in D	PHF6 PRPS1 PSMB5 PTCH1 PTEN RB1 RUNX1 SMARCA4 SMARCB1 SOCS2 SUFU SUZ12 TCF3 TET2 TP53 TSC1 TSC2 WHSC1 WT1 XIAP	ААВВВССССССШШҒҒҒҒ Б Б О Ј К К К К М	BL2 LK CL11B COR CR RAF AMTA1 CND1 CC REBBP RLF2 SF1R TV6 WSR1 GFR1 GFR2 GFR3 LT3 US GFR3 LT3 US GFR3 LT3 US GFR3 LT3 US GFR3 LT3 US GFR3 LT3 US GFR3 LT3 US GFR2 MT2A MT2A MT2A MT2B MT2C MT2D	MECOM MET MKL1 MLLT10 MYB MYH11 MYH9 NCOA2 NOTCH1 NOTCH2 NPM1 NR4A3 NTRK1 NTRK2 NTRK3 NUP214 NUP214 NUP98 NUTM1 PAX3 PAX5 PAX7 PDGFB PDGFRA PDGFRB PLAG1 RAF1 RANBP17 RARA	RELA RET ROS1 RUNX1 SS18 SSBP2 STAT6 TAL1 TCF3 TFE3 TSLP USP6 YAP1 ZNF384 Gene Expression BCL2 BCL6 FGFR1 FGFR4 IGF1R MET MYCN TOP2A
		1,42	:/ ampli	cons in R	NA assay				

All Major Pediatric Leukemia Translocations Are Represented

- Acute lymphoblastic leukemia ETV6-RUNX1, E2A-PBX, BCR-ABL1, MLL-AF4, CDKN2A
- Ph+ –like B-precursor ALL ABL1, ABL2, CSF1R, PDGFRB, EPOR, AK2, CRLF2, FLT3, KRAS, CD22delE12
- Acute myelogenous leukemia FLT3, NPM1, KIT, IDH1, IDH2, DNMT3A, RAS, RUNX1, TET2, CEBPA
- Acute promyelocytic leukemia PML-RARα

Pediatric Brain Tumors:

Comprehensive Coverage Across All Common Types


AT/RT, cribiform neuro-epithelial tumor, Schwannoma	SMARCB1
Medulloblastoma, WNT, RT (Rhabdoid Tumor)	SMARCA4
Medulloblastoma	GLI2, MSH2, MSH6, MYCN, PMS2, PTCH1, SUFU
Ependymoma	RELA
Ependymoma, Meningioma	NF2
Astrocytoma	FGFR1, HIST1H3B, MDM2, MLH1, NF PTPN11, TERT, TP53, QK1
Glioblastoma	MDM4
Glioma, Astrocytoma gr I-IV, Ependymoma Gr 3-4	PTEN
Glioma, Astrocytoma I-IV, Oligoastrocytoma	H3F3A
Pilocytic Astrocytoma	BRAF, FAM131B, NTRK2

Panel Identifies Key Gene Fusions in Pediatric Sarcomas

Rhabdomyosarcoma (embryonal & alveolar)	PAX3/7-FOXO1
Ewing sarcoma	EWS-FLI1/ERG
Synovial cell sarcoma	SYT-SSX1/2/4
 Infantile(congenital) fibrosarcoma 	ETV6 -NTRKC
 Desmoplastic small round cell tumor 	EWS-WT1
 Alveolar soft part sarcoma 	TFE3-ASPSCR1 (ASPL)
Clear cell sarcoma (melanoma of soft parts)	EWS-ATF1, EWS-CREB1
 Inflammatory myofibroblastic tumor 	ALK-TPM3/4, CLTC, ATIC
Fibromyxoid sarcoma	FUS-CREBB3L2/1
 Dermatofibrosarcoma protuberans 	COL1A-PDGFB
Epithelioid sarcoma	SMARCB1
 Angiomatoid fibrous histiocytoma 	EWS-CREB1
 Epithelioid hemangioendothelioma 	WWTRC1-CAMTN
 Mesenchymal chondrosarcoma 	HEY1-NCOA2
 Malignant peripheral nerve sheath tumor 	NF1/NF2 mut
 Undifferentiated sarcoma 	BCOR-CCNB3, CIC-DUX4
Midline carcinoma	NUT-BRD4
 Low grade fibromyxoid sarcoma 	FUS-CREB1L1 and FUS-CREB1L3

Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

*For Research Use Only. Not for use in diagnostic procedures

Advantages of Each Component of the Assay

- Library Preparation = Amplicon-based NGS library prep technology*
 - Interrogate DNA and RNA isolated from FFPE
 - Small input (\geq 20 ng RNA and DNA)
 - Automated library prep and chip loading
- Sequencing = Next-generation sequencing*
 - Fast turn-around time (2 hours)
 - Automated alignment (FASTQ to BAM) and variant calling (VCF)
 - Benchtop sequencer
- **Bio-Informatic Analysis**
 - Commercial Pipeline (NGS & NGS software analysis platform) *
 - Custom Scripts (ICE[™])

*For Research Use Only. Not for use in diagnostic procedures

Virtually Any Type of Specimen Can Be Profiled

• Blood and bone marrow (purple top tube)

- Fresh/frozen tissue
- FFPE tissue (unstained slide, blocks, scrolls)
 - sample quality is assessed prior to library preparation

Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

Performance Verification *Over 500 Samples Processed*

- 503 samples have been run to date
- 237 unique tumor samples
- Also measured panel against synthetic control material (Acrometrix, with known SNVs, InDels)

Performance

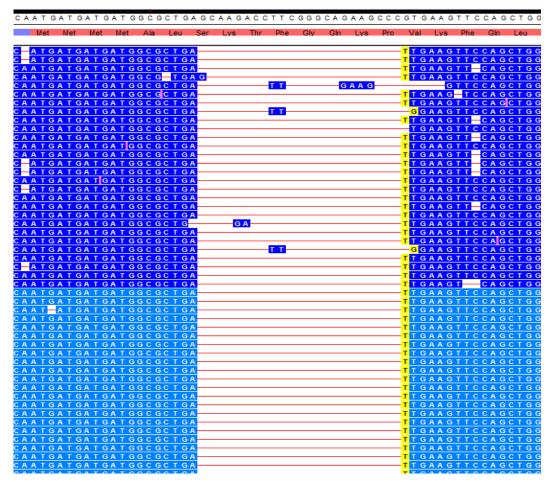
- >5000X average coverage for DNA variants
- Average uniformity >95%
- Average mapped reads >2,000,000 for RNA fusions

DNA Features Detected

- **SNV** = single nucleotide variant
- InDel = insertion/deletion
- Gene Amplification: ≥ 6-fold

Verified technical performance:

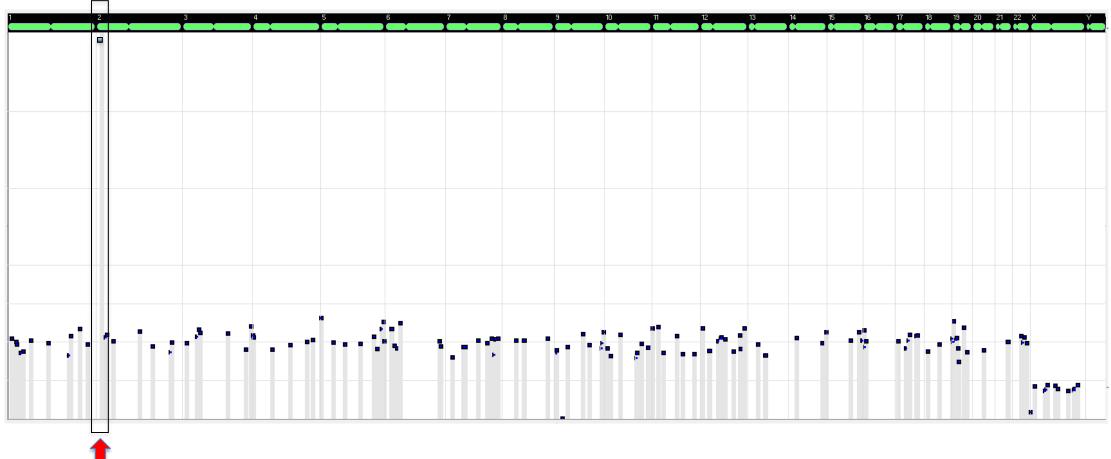
- SNVs: 5% variant allele frequency
- InDels: 10% variant allele frequency



Assay is Sensitive and Specific

Single Nucleotide Variant: C to T

CATAGGTGGGA	AACTAC	стссст	ATG	TTC(CGAG	GTT	СТС	TGT	A C A	A A G	AGA	ATA	ССС	СT	CΑ	СТС	TG	GAGG
	1	Les des	11.7	DL .	1					L.						1		1
Val Gly	Asn Tyr	Leu Arg	Met	Phe	Arg	Gly S	ier l	eu	Tyr	Lys	Arg	Tyr	Pro) 3	ier –	Leu	Trp	Arg
				TTOT	0.1.0	0 T T	0 7 0	тот		1.0		TA		0 T			TO	
CATAGGTGGGA			AIG	II L <mark>I</mark>	GAG	611	616	101	ACA	AG	AGA	A I A		61	L A	616	160	3 A G G
<u>C A T A G G T G G G A</u> C A T A G G T G G G A		CTCCGT	ATC	ттет	0 1 0	с т	C T C	тет		1.0		ТЛ		C T	с л.	о т о	TC	
C A T A G G T G G G A	CTAC	C T C C G T	ATC		GAG				ACA	AG	AGA						TG	
C A T A G G T G G G A		C T C C G T																
C A T A G G T G G G A		CTCCGT																
CATAGGTGGGA		CTCCGT																
CATAGGTGGGA		TCCGT																
CATAGGTGGGA		TCCGT																
CATAGGTGGGA																		
CATAGGTGGGA		TCCGT																
CATAGGTGGGA		СССТ																
CATAGGTGGGA		CCGT																
CATAGGTGGGA		CCGT									-							
CATAGGTGGGA		ССБТ	ATG	ттст	GAG	GTT	стс	TGT	ACA	AG	AGA	TA	ссс	CT	CA	стс	TG (GAGG
CATAGGTGGGA		ССБТ																
CATAGGTGGGA																		
CATAGGTGGGA																		
CATAGGTGGGA		CGT	ATG	ттсс	GAG	GTT	стс	TGT	ACA	AG	AGA	TA	ссс	CT	CA	стс	TG (GAGG
CATAGGTGGGA		GT	ATG	T T C <mark>T</mark>	GAG	GTT	стс	TGT	ACA	AG	AGA	TA	ссс	CT	CA	стс	TG(GAGG
CATAGGTGGGA		T	ATG	T T C <mark>T</mark>	GAG	GTT	стс	TGT	ACA	AG	AGA	TA	ссс	CT	C A (стс	TG (G A G G
CATAGGTGGGA		T	ATG	T T C <mark>T</mark>	GAG	GTT	СТС	TGT	ACA	AG	AGA	TA	ссс	CT	CA	стс	TG (G A G G
CATAGGTGGGA																		
CATAGGTGGGA										G	AGA	TA	ссс	CT	C A (CTC	TG (GAGG
CATAGGTGGGA		_																
CATAGGTGGGA		T	ATG	TTCT	GAG	GTT	СТС	TGT	ACA	AG	AGA	TA	CC	CT	C A	СТС	TG (GAGG
CATAGGTGGGA																		


InDel: 24 base deletion

SMARCB1 c.118C>T, p.Arg40* SMARCB1 c.20_43delGCAAGACCTTCGGGCAGAAGCCCGinsT (p.Ser7llefs*56)

Detection of DNA Amplifications is Highly Specific

MYCN in MYCN amplified neuroblastoma

RNA Features Detected

- Gene Fusions annotated and unannotated (novel pairing)
- Gene Expression # reads per gene, c/w average of 4 housekeeping genes

n.b.: Gene Fusions:

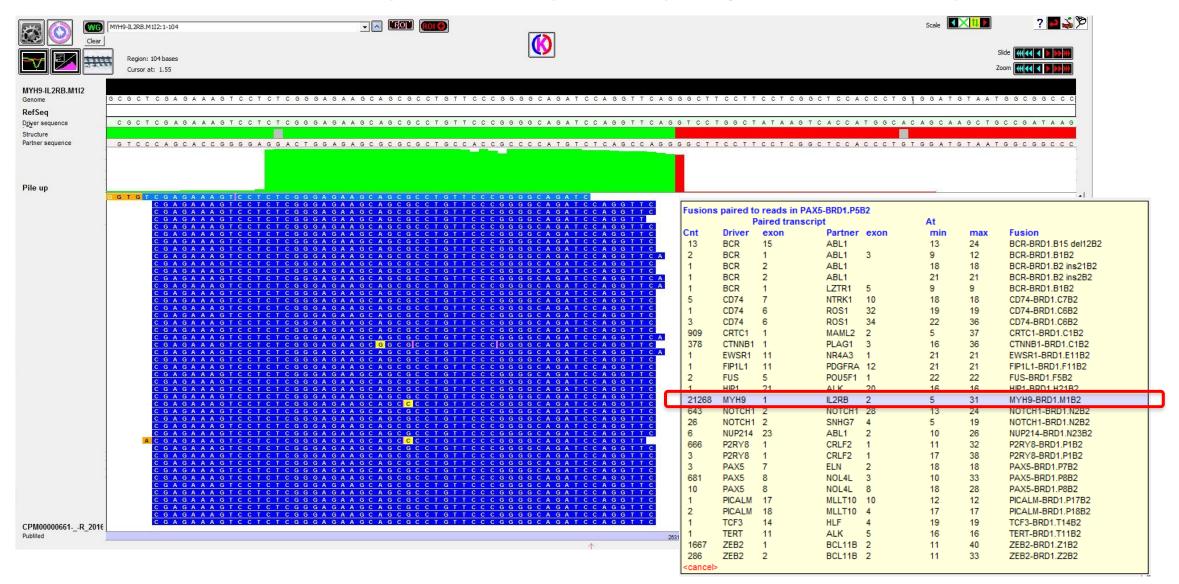
- 78 parent fusions
- >1,400 variants
- Ability to detect *de novo* fusions from pairing of existing primer pairs

A Diverse Range of Hematologic Fusions are Detected*

ATF7IP-JAK2	ETV6-NTRK3	P2RY8-CRLF2	RCSD1-ABL2
BCR-ABL1	ETV6-RUNX1	PAG1-ABL2	SSBP2-JAK2
BCR-JAK2	FIP1L1-PDGFRA	PAK5-JAK2	STIL-TAL1
CRLF2-P2RY8	FOXP1-ABL1	PML-RARA	TERF2-JAK2
EBF1-PDGFRB	MLL Rearrangement	RANBP2-ABL1	ZC3HAV1-ABL2
ETV6-ABL1	NUP214-ABL1	RBM15-MKL1	ZEB2-PDGFRB
ETV6-JAK2	NUP98-NSD1	RCSD1-ABL1	ZMIZ1-ABL1

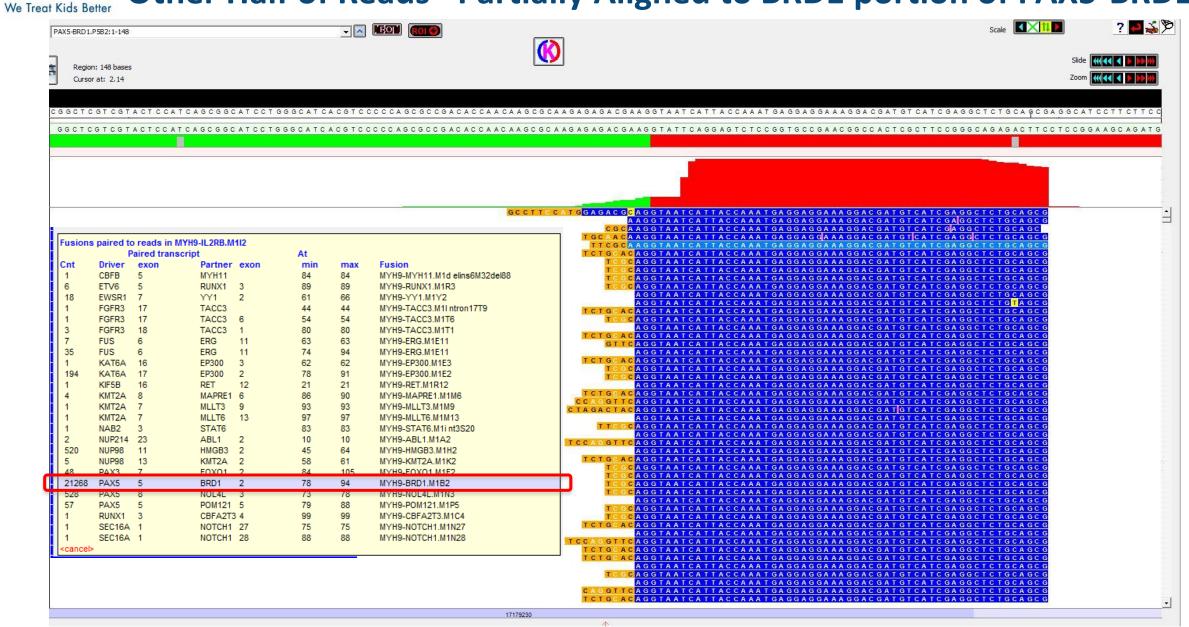
*Confirmed samples used for verification

Key Solid Tumor Fusions were verified*


EWSR1 Rearrangement	Ewing Sarcoma
PAX3-FOXO1	Alveolar Rhabdomyosarcoma
SS18-SSX1	Synovial Sarcoma
ETV6-NTRK3	Congenital Mesoblastic Nephroma
FUS-CREB3L2	Fibromyxoid Sarcoma
GOPC-ROS1	Glioblastoma Multiforme
KIAA1549-BRAF	Pilocytic Astrocytoma
Cllorf95-RELA	Ependymoma
NPM1-ALK	Anaplastic Large Cell Lymphoma
CCDC6-RET	Lung Adenocarcinoma
EML4-ALK	Lung Adenocarcinoma

*Confirmed samples used for verification

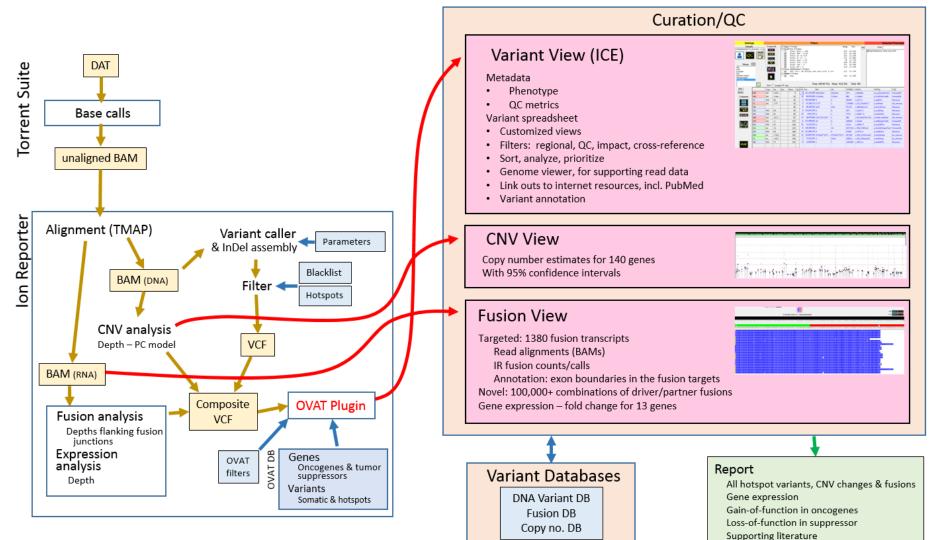
Novel Tumor Fusions were Discovered


MYH9-IL2RB transcript – reads partially aligned to MYH9 portion

Other Half of Reads– Partially Aligned to BRD1 portion of PAX5-BRD1

Children's Hospital

LOS ANGELES



Stitching these together – full reads aligned to MYH9-BRD1 transcript

			-	Scale Scale	- ? 🛃 💑 🎾
	PAX5-BRD1.P5B2:81-125			Scale Scale	
			(V)		Slide IIII
	Region: 45 bases Cursor at: 2.21				Zoom ##
MYH9-IL2RB.M1I2					
	GCGCTCGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
Driver sequence	С С С Т С С А С А А А	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	6 6 C A 6 A T C C A 6 6 T T C A 6 6 T C C T	G G C T A T A A G T C A C C A T G G C A C A G C A A G C	TGCCGATAAG
Structure Partner sequence	GTCCCAGCACC	G G G G A G G A C T G G A G A G C G C G C G C T G C C A C C G C	C C C A T G T C T C A G C C A G G G C T T	<u>CCTTCCTCGGCTCCACCCTGTGGATGTA</u>	ATGGCGGCCC
Pile up	G G T G T C G A G A A A	GTCCTCTCGGGAGAAGCAGCGCCTGTTCCCGG	G G C A G A T C <mark>C A G G T T C</mark> A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	C G A G A A A C G A G A A A	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G A G A	C A T T A C C A A A T G A G G A G G A G G A A A G G A C G A T C A T T A C C A A A T G A G G A G G A A A G G A C G A T	G T C A T C G A G G G T C A T C G A G G
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	CATTACCAAATGAGGAGGAAAGGACGAT	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
	C G A G A A A C G A G A A A	<u> </u>	G G A G A	C A T T A C C A A A T G A G G A G G A A A G G A C G A T C A T T A C C A A A T G A G G A G G A A A G G A C G A T	G T C A T C G A G G G T C A T C G A G G
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C C C T G T T C C C G G	G G C A G A T C C A G G T T <mark>A</mark> A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	G T C A T C G A G G
	C G A G A A A C G A G A A A	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	<u> </u>	C A T T A C C A A A T G A G G A G G A A G G A C G A T C A T T A C C A A A T G A G G A G G A A G G A C G A T	G T C A T C G A G G G T C A T C G A G G
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	CATTACCAAATGAGGAGGAAAGGACGAT	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	<u>CATTACCAAATGAGGAGGAAGGACGAT</u>	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	CATTACCAAATGAGGAGGAAAGGACGAT	GTCATCGAGG
	C G A G A A A C G A G A A A	<u>G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G</u> G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	<u> </u>	C A T T A C C A A A T G A G G A G G A G G A A G G A C G A T C A T T A C C A A A T G A G G A G G A A A G G A C G A T	G T C A T C G A G G G T C A T C G A G G
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G C	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
	C G A G A A A C G A G A A A	<u>G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G</u> G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	<u>G G A G A </u>	C A T T A C C A A A T G A G G A G G A A A G G A C G A T C A T T A C C A A A T G A G G A G G A A A G G A C G A T	G T C A T C G A G G G T C A T C G A G G
CPM00000661R 2016	CGAGAAA	G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G T C C T C T C G G G A G A A G C A G C G C C T G T T C C C G G	G G C A G A T C C A G G T T C A G G T A A T	C A T T A C C A A A T G A G G A G G A A G G A C G A T	GTCATCGAGG
PubMed			26814551		

Performance Improved with ICE (Integrated Curation Environment)

ICE Performance Specifications*

SNVs

SNV

Acrometrix test sample; >5% VAF)		Absent	Present
	No Call	213,510	0
Variant Caller	Call	9	303

Sensitivity: 100% Specificity: >99%

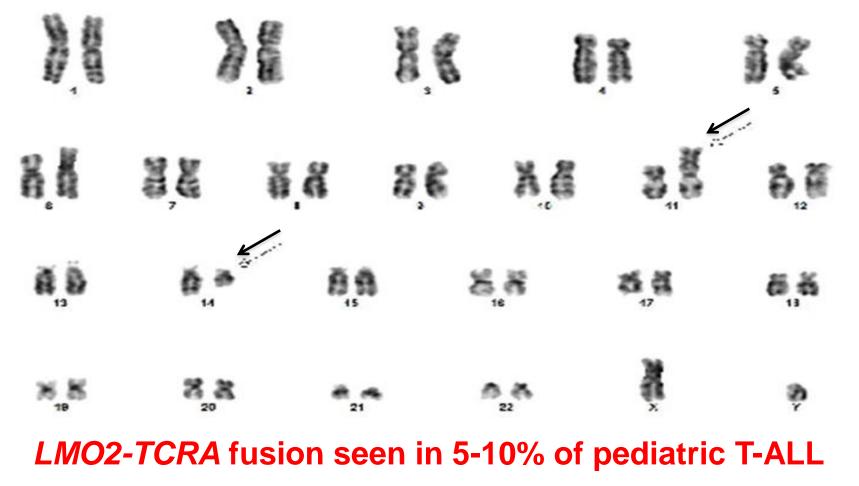
InDels

Acrometrix test sample; >10% VAF)

InDel

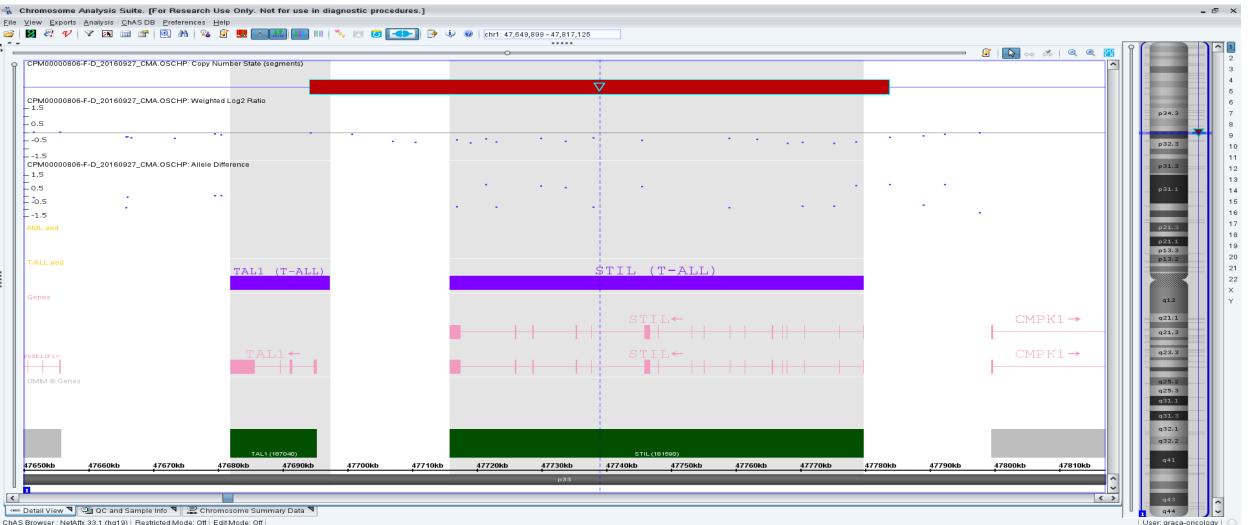
ICE		Absent	Present
InDel	No Call	213,803	0
Variant Caller	Call	0	19

Sensitivity: 100% Specificity: 100%


Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

Clinical Research Case Study #1: T-ALL


Cytogenetics: *LMO2-TCRA* fusion 46,XY,t(11;14)(p13;q11.2)[7]/46,XY[1]

Results provided by Sammy Wu, CHLA cytogenetics

Chromosomal Microarray Results: ~80 kb Deletion in 1p33, Fusing 5' Portion of STIL to 3' Portion of TAL1

ChAS Browser : NetAffx 33.1 (hg19) Restricted Mode: Off Edit Mode: Off

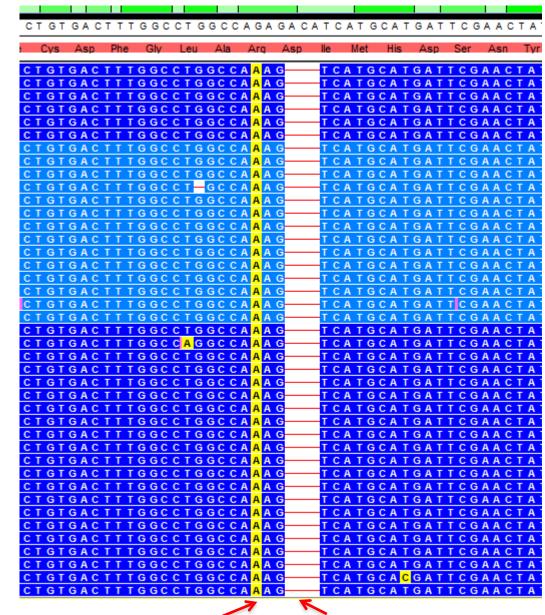
NGS Result: Two Dominant Fusions demonstrated : STIL-TAL1 & FIP1L1-PDGFRA

- Two dominant fusions (of seven) seen in the data
- The **PDGFRA fusion** can <u>potentially</u> identify candidate targeted therapeutics like Imatinib[™]

FUSION	FIP1L1(11) - PDGFRA(12)	158	Present	
FUSION	STIL(1) - TAL1(2)	124658	Present	Type2
FUSION	MET(13) - MET(15)	199	Present	
FUSION	STIL(1) - TAL1(2)	10225	Present	
FUSION	MET(17) - MET(20)	1367	Present	
FUSION	FIP1L1(13) - PDGFRA(12)	6689	Present	
FUSION	FIP1L1(13) - PDGFRA(12)	46	Present	

PDGFRA Hotspots Covered on the panel

Mutation p.N659K p.T674I **p.D842V** p.D848K

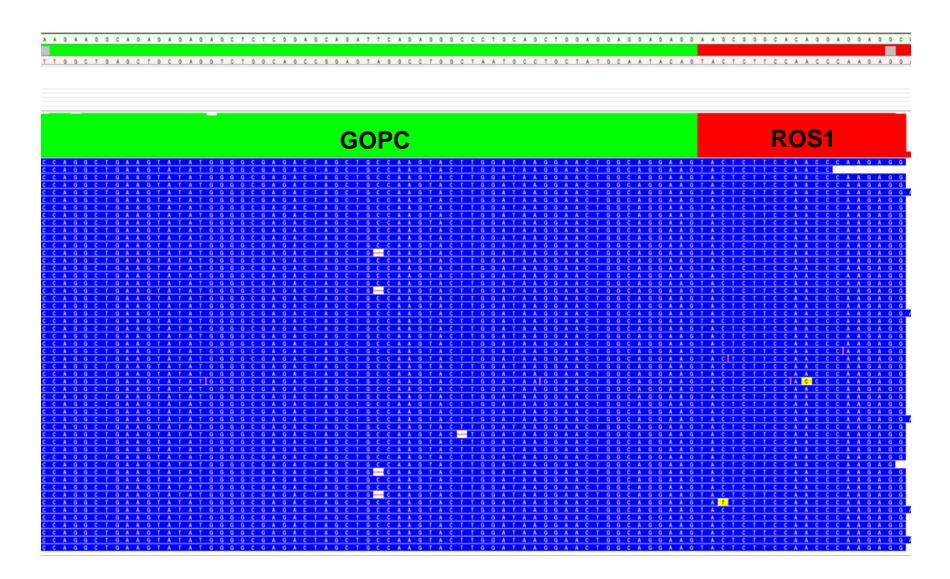

Detected *PDGFRA* Variant (D842V) [Deletion & Insertion]

NM_006206 (*PDGFRA):* c.2522_2527delinsAAG (p.Arg841_Ile843delinsLysVal)

Present at roughly 14.22 % variant allele frequency

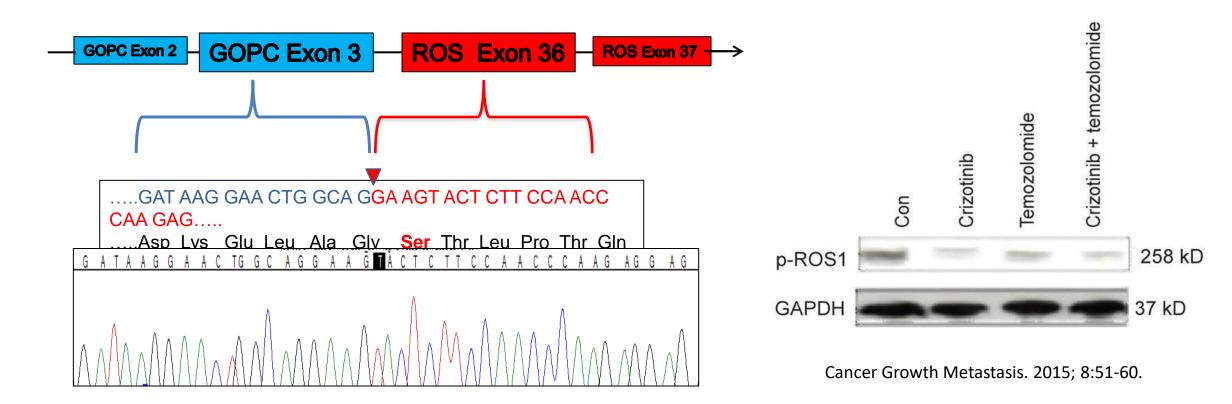
This variant was NOT DETECTED in the previous lymph node sample

DOD 12/30/2016



SNV G->A

Deletion ACA


Clinical Research Case Study #2: Glioblastoma - GOPC-ROS1 Fusion in 283317 Reads

GOPC-ROS1 Fusion relevance

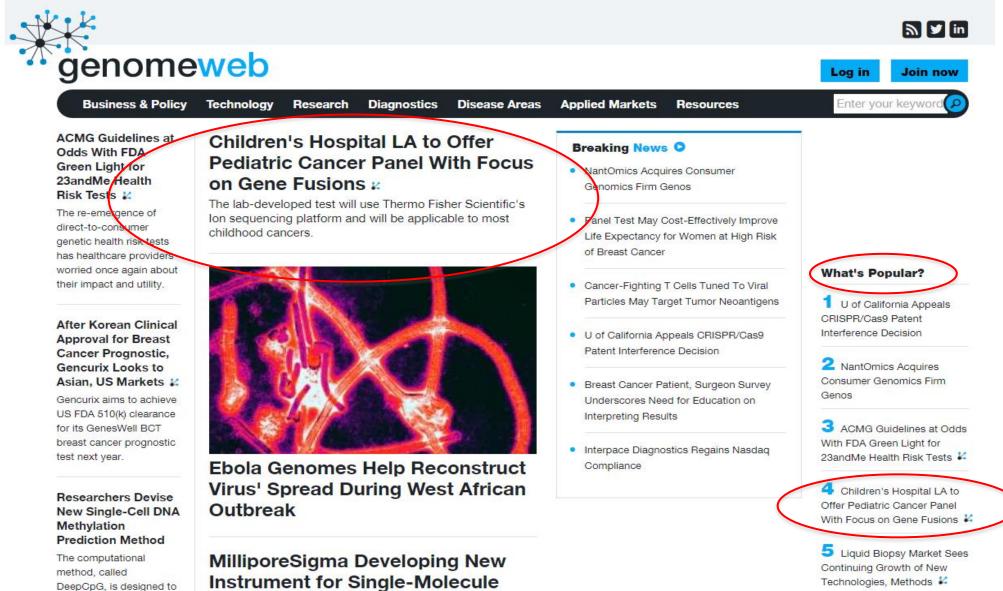
Conclusions

- The assay is designed specifically for use in pediatric cancer research
 - Designed using Amplicon-based NGS library prep & Next-generation sequencing*
 - Content developed in collaboration with CHLA & COG pediatric oncologists
 - 49 of 51 targets identified by COG TAP committee are included
- The same 52 genes designated as candidate therapeutic targets in Adult Oncomine Focus for NCI MATCH program are present in our panel as well
- Nearly 200 hotspot and full length genes already identified in pediatric cancer are also included
- 78 parent, relevant gene fusions are included (yielding > 1,500 combinatorial variants, including novel, previously unreported gene fusions)
- Custom bioinformatics pipeline, ICE (Integtrated Curation Environment), enabling best in class precision, sensitivity, and specificity

Acknowledgements

Children's Hospital Los Angeles

- Jaclyn Biegel
- Jonathan Buckley
- Tracy Busse
- Xiaowu Gai
- Matt Heimenz
- Alex Judkins
- Dennis Maglinte
- Gigi Ostrow
- Gordana Raca
- Tim Triche


Thermo Fisher Scientific

- Janice Au-Young
- John Bishop
- Karen Clyde
- Dinesh Cyanam
- Susan Ewald
- Nick Khazanov
- Vinay Mittal
- Scott Myrand
- Jingwei Ni
- Chaitali Parikah
- Jon Sherlock
- Jeff Smith
- JimVeitch

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.

GENOME WEB – APRIL 13, 2017

