Critical Microbiology Results for Critical Patients

James A. McKinnell, M. D.

LA-Biomed at Harbor UCLA Medical Center

David Geffen School of Medicine, UCLA

Disclosures

- I have received Government Research Funding from NIH, AHRQ, CDC, and CTSI
- I have served as a consultant for Achaogen, Allergan, Cempra, Science 37, Theravance, and Thermo Fisher Scientific
- I lead antimicrobial stewardship initiatives in Skilled Nursing Facilities, Expert Stewardship, INC.
- I developed the presentation and the opinions expressed are my own

Objectives

- Discuss a challenging case from a clinical and laboratory perspective
- Evaluate testing options for rapid identification of resistant infections
- Discuss changing epidemiology of *Candida* infections
- Discuss the need for ongoing breakpoint updates

Estimates of HAIs in U.S. Acute Care Hospitals (2011)

Infection Site	Estimated Number
Surgical Site Infections (from any inpatient surgery)	157,500
Pneumonia	157,500
Gastrointestinal Illness	123,100
Other Types of Infections	118,500
Urinary Tract Infections (UTIs)	93,300
Primary Bloodstream Infections (BSIs)	71,900
Estimated Total Number of Infections in Hospitals	721,800

Centers for Disease Control and Prevention. Healthcare-associated Infections (HAIs). Updated October 15, 2015. <u>http://www.cdc.gov/HAI/surveillance/</u>. Accessed November 17, 2015.

US Causes of Death

	2013	Deaths
1	Heart Disease	611,000
2	Cancer	584,000
3	Accidents	130,000
4	Stroke	129,000
5	Healthcare Associated Infections	100,000
6	Alzheimer's Disease	83,000

http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm Accessed 4/22/2015, rounded to the nearest thousand deaths. http://www.cdc.gov/HAI/pdfs/hai/infections_deaths.pdf_Accessed 4/22/2015.

Case Presentation

- The following descriptions are of real cases that I or my colleagues have managed
- I will discuss use of antibiotics that may not follow FDA approved indications, but do follow generally accepted clinical practice
- Identifying information has been changed

Lucy

65 year old female transferred from OSH for pneumonia

PMH: COPD, Bronchiectasis, Diastolic CHF, Recurrent Pneumonia (prior pathogen history unknown)

- 2 Weeks ago Treated in Mexico for pneumonia, prior antimicrobial therapy unknown
- 5 Days ago admitted to OSH w/ cough, sputum, and SOB.
 Immediately intubated

Piperacillin-tazobactam 3.375 gm IV q6Hours

Lucy: Admission Exam

T: 101.2 RR: 22 BP: 104/62 HR: 125 Fi**O2: 92%**

- Intubated, Sedated
- Frail with slight temporal wasting
- JVD was Flat
- Tachycardic, No MRG
- RLL Rhonchi
- Decreased muscle mass
- No skin rash
- PEEP of 8 cm H2O and 80% FiO2
- Currently on norepinephrine at 6
 mcg/min
- Labs: WBC: 13K, GFR>80, LFTs
 WNL

RLL Pneumonia Gram-Negative Rods

X-Ray Image courtesy of James McKinnell, MD case files Gram Stain image: CDC Public Health Image Library

Lucy Assessment and Plan

- 65 yo with sepsis, RLL pneumonia with Gram-negative rods, respiratory failure, retained organ function on vasopressor therapy.
- RLL pneumonia progressed while on Piperacillin-Tazobactam
- What antibiotics should we use?

Inadequate antimicrobial therapy associated with higher mortality

Rank order of Pathogens Causing VAP S. aureus Other 24% 28% **P**. A. baumanni aeruginosa 6% 17% K. Pneumonia Enterobacter spp. E. Col 25%

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		Penicillins			Cephalosporins C			Carbapenems			Aminoglycosides			Fluoro- quinolone	Oth	er	
Ormaniam	No. Isolates	Ampicillin⁵	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- ulfamethoxazole	Colistin ⁷
Organism Citrobacter freundii	37	P ²	R	76	R	89	_4	_4	97	99	99	99	89	92	92	00 81	99
Enterobacter aerogenes	94	R	R	88	R	98	_4	_4	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209	R	R	81	R	92	_4	_4	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	— ⁴	- ⁴	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	-4	— ⁴	97	94	96	99	99	96	93	98	R
Acinetobacter baumannii	62	R	62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84	R	88	87	R	R	81	85	96	91	94	78	R	99
Stenotrophomonas maltophilia	84	R	R		R	-	30	R	R	R		R	R	R	-	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

Antibiogram data source: UCLA Health Infectious Disease

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		Penicillins			Cephalosporins			Carbapenems			Aminoglycosides			Fluoro- quinolone	Oth	er	
Organism	No. Isolates	Ampicillin ⁶	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- sulfamethoxazole	Colistin ⁷
Citrobacter freundii	37	R ²	R	76	R	89	_4	_4	97	99	99	99	89	92	92	81	99
Enterobacter aerogenes	94	R	R	88	R	98	_ ⁴	_ ⁴	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209	R	R	81	R	92	_4	-4	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	_ 4	_ 4	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	— ⁴	-4	97	94	96	99	99	96	93	98	R
Asinotobostor boumonnii	62	R	62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84	R	88	87	R	R	81	85	96	91	14	78	R	99
Stenotropnomonas mattopnilia	84	R	R	R	R	-	30	R	R	K	ĸ	R		R	-	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

Empiric Combination Therapy Is Associated with Higher Rates of Early, Appropriate Therapy for Patients with Sepsis Due to Gram-negatives

Micek S T et al. Antimicrob. Agents Chemother. 2010;54:1742-1748.

Combination Antibiogram from UCLA

Information provided for two-drug combination does NOT imply synergism, antagonism or likely activity in vivo; 1142 patients, includes the most resistant

	Amikacin (97) ¹	Gentamicin (92)	Tobramycin (95)	Ciprofloxacin (80)
Cefepime (90)	99 ²	97	97	95
Meropenem (87)	98	96	97	92
Piperacillin- tazobactam (86)	99	97	97	93
Ciprofloxacin (80)	98	95	96	-

*Includes pediatrics and adults

- 1. Percent susceptible for individual drug in parenthesis
- 2. Percent susceptible for either or both drugs (eg, %S to amikacin and/or cefepime

Adapted from antibiogram data source: UCLA Health Infectious Disease

Assessment and Plan

- 65 yo with sepsis, RLL pneumonia, respiratory failure, but retained organ function.
- Meropenem 1 q8 Hours (over 3H)
- Tobramycin 350mg IV q24

2 Days After Consult

- Lucy is still on ventilator, 100%
 O2, high positive ventilatory pressures
- Ongoing sputum production
- Max pressors, increased over last 24 hours

Susceptibility Pseudomonas aeruginosa

Antimicrobial	Susceptibility
Piperacillin/Tazobactam	R
Cefepime	R
Ceftazidime	R
Meropenem	R (MIC-32)
Ciprofloxacin	R
Gentamicin	R
Tobramycin	S
Colistin	S

Aminoglycoside Monotherapy Not Recommended for Pseudomonas

"Aminoglycoside monotherapy was associated with increased mortality, even after adjusting for confounders..."

Importance of Site of Infection and Antibiotic Selection in the Treatment of Carbepenem-Resistant *Pseudomonas aeruginosa* Sepsis.

Britt et al. *Antimicrob Agents Chemother.* 2018 Mar 27;62(4). pii: e02400-17. Print 2018 Apr.

Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes

Laurent Poirel, Aurélie Jayol, Patrice Nordmann April 2017, Clinical Microbiology Reviews Volume 30 Issue 2 <u>https://doi.org/10.1128/CMR.00064-16</u>

Automated Susceptibility Systems Poorly Identify Colistin Resistance

Polymyxin Study: AST Methods for Colistin

Broth Microdilution Method

Reference Method – CLSI & EUCAST

Agar Dilution

- Not recommended (CLSI/EUCAST)
- Laborious

Disk Diffusion

- Not reliable. Poor agar diffusion.
- High False-Susc. Results. ~35%

Etest (bMX)

- Not reliable.
- High False-Susc. Results of R strains.
- Overcalls MICs of Susc strains.

Vitek2 (bMX)

- Low Sensitivity for resistant strains.
- Not reliable for heteroresistance.
- Europe Field Notification DNR

Phoenix (BD)

- High False-Susc. Results. ~15%
- Low detection of Colistin heteroresist.

Microscan (Beckman)

87% Categorical Agreement (*Acinetobacter spp.*)

2 MIC Concentrations (2 & 4ug/ml)

Sensititre (TFS)

96% Categorical Agreement

Zero False Susceptibility Results

Concentrations (0.12-128 µg/ml)

Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria

- "The high patient mortality rate (44% at 28 days)... is sobering – considering that infection with bacteria susceptible to colistin was a criterion for inclusion and that colistin dosing was carefully controlled – but is not surprising."
- "...low Charlson and SOFA scores..."
- "...colistin, either as monotherapy or combined with a carbapenem, is not that effective."

Perez F, Bonomo RA. *Lancet Infect Dis.* 2018 Apr;18(4):358-360. doi: 10.1016/S1473-3099(18)30112-9. Epub 2018 Feb 16.

Ceftolozane-Tazobactam

- FDA indications: complicated UTI and complicated intraabdominal infection
- *P. aeruginosa* activity includes cefepime + pip-tazo + meropenem-resistant strains
- The tazobactam adds almost nothing for *P. aeruginosa* activity
- Current FDA approved dose is 1.5g Q8h. 3.0g Q8h for nosocomial pneumonia – study completed 6/6/2018
- No activity against carbapenemase producing Enterobacteriaceae

Clinicaltrials.gov: NCT02070757. Available at: https://clinicaltrials.gov/ct2/show/NCT02070757. Accessed September 13, 2018. Bulik CC et al. *Antimicrob Agents Chemother* 2010;54:557-559.

Ceftazidime-Avibactam

- FDA approved indications: cUTI, cIAI, nosocomial/ventilator pneumonia
- The avibactam is the game-changer
- Ability to inhibit KPC, OXA-48 type, and AmpC inhibition
- No metallo-beta-lactamase inhibition
- Marked improvement in MDR *P. aeruginosa* activity over ceftaz alone

Torres A, et al. Lancet Infect Dis 2018. http://dx.doi.org/10.1016/S1473-3099(17)30747-8.

Ceftazidime-Avibactam & Ceftolozane-Tazobactam for *P. aeruginosa* Resistant to: Ceftazidime, Meropenem, & Pip-Tazobactam

Cumulative % inhibited at an MIC of:

	#	≤0.25	0.5	1	2	4	8	16	32	>32
Ceftazidime -Avibactam	330		0.3	1.5	15.2	45.1	71.8	87.9	93	100
Ceftolozane - Tazobactam	175			12.6	39.4	68.6	85.1	89.7	92	100

Sader HS et al. *Antimicrob Agents Chemother* 2015;59:3656-3659. Table 1 Farrell DJ et al. *Antimicrob Agents Chemother* 2013;57:6305-6310. Table 3

Ceftazidime-Avibactam Versus Ceftolozane-Tazobactam for P. aeruginosa Resistant to: Ceftazidime, Meropenem, & Pip-Tazobactam*

	Number of Isolates	Caz/Avi	C/T
Humphries	105	29%	52.4%
Grupper	103	54%	79%
Sader	47	70.2%	72.3%

*Buehrle et al and Gonzalez et al excluded due to too few isolates for BLR resistance phenotype Humphries et al. *Antimicrobial agents and chemotherapy.* 2017 Dec 1;61(12):e01858-17. Grupper et al. *Antimicrob Agents Chemother.* 2017 Sep 22;61(10). pii: e00875-17. doi: 10.1128/AAC.00875-17. Print 2017 Oct. Sader et al. *J Antimicrob Chemother.* 2018 Jul 27. doi: 10.1093/jac/dky279. [Epub ahead of print] I need to know antimicrobial susceptibility to these novel agents to effectively manage *P. aeruginosa* resistant to Ceftazidime, Meropenem, and Pip-Tazo.

It's not all the time, but when I need AST data - there is no substitute.

Can you help with my Septic Patient?

- MF is a 48 year old male physician
- No past medical history
- Admitted 3 weeks ago to an OSH with ischemic bowel
- Immediate resection of bowel with re-anastamosis

Can you help with my Septic Patient?

- Post-operatively develops mild peritonitis
- Poor return of GI function on TPN via PICC line
- Transferred yesterday, doing well on: Vancomycin and Piperacillin-Tazobactam

Can you help with my Septic Patient?

- MF "Crumped" today
- Febrile
- Intubated, high ventilation requirements
- Multiple pressors
- New leukocytosis, renal failure, shock liver

RLL Pneumonia

Review of Today's Culture data

Outside hospital blood cultures: gram-negative rods

Outside hospital: urine culture positive for "Yeast"

Rank order of Pathogens Causing VAP S. aureus Other 24% 28% Ρ. A. baumanni aeruginosa 6% 17% K. Pneumonia Enterobacter spp. E. Col 25%

Sievert et al. Antimicrobial Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to NHSN at the CDC, 2009-2010, ICHE January 2013

Empiric Combination Therapy Is Associated with Higher Rates of Early, Appropriate Therapy for Patients with Sepsis Due to Gram-negatives

Micek S T et al. Antimicrob. Agents Chemother. 2010;54:1742-1748.
GNR: Meropenem/Gentamicin

The Power of Rapid Identification

Table 2.RRUMC: Adults (>21 y.o.) Gram-negative Bacteria –
Non-Urine Isolates, % Susceptible

		Penicillins			Cephalosporins				Carbapenems			Aminoglycosides			Fluoro- quinolone	Oth	er
Organism	No. Isolates	Ampicillin	Ampicillin- sulbactam	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- sulfamethoxazole	Colistin
Citrobacter freundii	40	R ²	R	88	R	93	3,4	4	90	93	95	99	83	93	85	73	99
Enterobacter aerogenes	63	R	R	79	R	95	_4	4	98	95	99	99	99	99	98	98	99
Enterobacter cloacae	172	R	R	81	R	92	4	_4	95	99	99	99	98	98	97	91	79
Escherichia coli	441	41	50	92	59	84	83	79	98	99	99	98	79	81	58	55	99
Klebsiella oxytoca	102	R	66	91	31	95	95	92	98	99	99	99	95	97	96	91	99
Klebsiella pneumoniae	299	R	72	88	71	86	84	82	93	93	93	94	90	87	85	76	98
Morganella morganii	29 ⁵	R	R	97	R	99	_4	_4	99	_	99	99	76	90	69	66	R
Proteus mirabilis	117	74	87	99	34	95	97	92	99	_	99	99	87	93	71	70	R
Serratia marcescens	99	R	R	98	R	99	_4	_4	99	97	99	99	99	99	93	99	R
Acinetopacter paumannii	49	R	69	49	R	63	61		R	74	71	74	65	69	63	67	94
Pseudomonas aeruginosa	498	R	R	87	R	89	90	R	R	80	86	15	92	96	78	R	99
	53	R	R	R	R	_	32	R	R	R	-	R	_	R	—	94	45
Burkholderia cepacia complex	12°	R	R	R	R	R	42	R	R	R	42	R	R	R	58	92	R

¹ Cefotaxime and ceftriaxone have comparable activity against *Enterobacteriaceae*.

² R = intrinsic resistance.

³ — = Not routinely tested and/or not applicable.

 $^{\rm 4}\,{\rm 3^{rd}}$ generation cephalosporins should not be used for serious infections.

⁵ Calculated from fewer than the standard recommendation of 30 isolates.

http://www.pathnet.medsch.ucla.edu/department/cliniclab/microbio/amic.pdf Accessed 11/22/2017

Table 2.RRUMC: Adults (>21 y.o.) Gram-negative Bacteria –
Non-Urine Isolates, % Susceptible

		Penicillins			Cephalosporins				Carbapenems			Aminoglycosides			Fluoro- quinolone	Oth	er
	No. Isolates	Ampicillin	Ampicillin- sulbactam	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim– ulfamethoxazole	Colistin
Organism Citrobactor froundii	40	P ²		00	B	02	3,4	4	00	02	05	00	02	02	95	0 72	00
	40	R	ĸ	00 70	R	93	4	4	90	93	90	99	83	93	65	73	99
Enteropacter aerogenes	63	R	R	79	R	95		-	98	95	99	99	99	99	98	98	99
Enteropacter cloacae	172	R	R	81	R	92			95	99	aa	<u>99</u>	ag	98	97	91	79
Escherichia coli	441	41	50	92	59	84	83	79	98	99	99	8	79	B 1	58	55	99
Kiekeielle englese	102	R	66	91	31	95	95	92	98	99	00)9	05	97	96	91	99
Klebsiella pneumoniae	299	R	72	88	71	86	84	82	93	93	93	94	90	87	85	76	98
Morganella morganii	29 ⁵	R	R	97	R	99	_4	_4	99	_	99	99	76	90	69	66	R
Proteus mirabilis	117	74	87	99	34	95	97	92	99	_	99	99	87	93	71	70	R
Serratia marcescens	99	R	R	98	R	99	_4	4	99	97	99	99	99	99	93	99	R
Acinetobacter baumannii	49	R	69	49	R	63	61	—	R	74	71	74	65	69	63	67	94
Pseudomonas aeruginosa	498	R	R	87	R	89	90	R	R	80	86	95	92	96	78	R	99
Stenotrophomonas maltophilia	53	R	R	R	R	—	32	R	R	R	R	R	R	R	_	94	45
Burkholderia cepacia complex	12 ^⁰	R	R	R	R	R	42	R	R	R	42	R	R	R	58	92	R

¹ Cefotaxime and ceftriaxone have comparable activity against *Enterobacteriaceae*.

² R = intrinsic resistance.

³ — = Not routinely tested and/or not applicable.

 $^{\rm 4}\,{\rm 3^{rd}}$ generation cephalosporins should not be used for serious infections.

⁵ Calculated from fewer than the standard recommendation of 30 isolates.

http://www.pathnet.medsch.ucla.edu/department/cliniclab/microbio/amic.pdf Accessed 11/22/2017

GNR: Meropenem/Gentamicin

GP: Vancomycin -> Linezolid

Linezolid for empiric coverage of MRSA pneumonia is controversial. My decision was based on the zephyr trial that suggested improved outcomes with linezolid in treatment of confirmed MRSA pneumonia.

Chavanet et. al. Med Mal Infect. 2013

Review of Today's Culture data

- Outside hospital blood cultures: Gram-negative rods
- Outside hospital: Urine culture positive for "Yeast"

Should we care about the positive urine culture?

IDSA GUIDELINE

Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America

Peter G. Pappas,¹ Carol A. Kauffman,² David R. Andes,³ Cornelius J. Clancy,⁴ Kieren A. Marr,⁵ Luis Ostrosky-Zeichner,⁶ Annette C. Reboli,⁷ Mindy G. Schuster,⁸ Jose A. Vazquez,⁹ Thomas J. Walsh,¹⁰ Theoklis E. Zaoutis,¹¹ and Jack D. Sobel¹²

Don't rely on blood cultures to find Candidiasis

Proportion of patients with autopsy-proven candidiasis with positive blood cultures

Too Little, Too Late?

Proportion of patients with autopsy-proven candidiasis with positive blood cultures (n=41)

**DMID 1993 17:103-9

Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America

"Fever in a Patient on Broad Spectrum Antibiotics"

- -Candida colonization
- -Severity of illness
- -Exposure to broad-spectrum antibiotics
- -Recent major surgery (especially abdominal surgery)
- -Necrotizing pancreatitis
- -Dialysis
- -Parenteral nutrition
- -Corticosteroids
- -Use of central venous catheters

Can you help with my Septic Patient?

- MF is a 48 year old male Physician
- No Past Medical History
- Admitted to OSH 3 weeks ago with Ischemic Bowel
- Immediate Resection of Bowel with Re-Anastamosis

Can you help with my Septic Patient?

- Post-Operatively develops Mild Peritonitis
- Poor Return of GI function on TPN via PICC line
- Transferred from the OSH yesterday, doing well on: Vancomycin and Piperacillin-Tazobactam

Can you help with my Septic Patient?

- MF "Crumped" today
- Febrile
- Intubated, High Ventilation Requirements
- Multiple Pressors
- Renal Failure
- Shock Liver

Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America

Peter G. Pappas,¹ Carol A. Kauffman,² David R. Andes,³ Cornelius J. Clancy,⁴ Kieren A. Marr,⁵ Luis Ostrosky-Zeichner,⁶ Annette C. Reboli,⁷ Mindy G. Schuster,⁸ Jose A. Vazquez,⁹ Thomas J. Walsh,¹⁰ Theoklis E. Zaoutis,¹¹ and Jack D. Sobel¹²

Presumptive treatment of occult candidemia for nonneutropenic patients

- Candida colonization
- Severity of illness
- Exposure to broad-spectrum antibiotics
- Recent major surgery (especially abdominal surgery)
- Necrotizing pancreatitis
- Dialysis
- Parenteral nutrition
- Corticosteroids
- Use of central venous catheters

Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America

Presumptive treatment based on risk factors

Critical patients should receive an Echinocandin.

Changing epidemiology of Candida

Species distribution of Invasive Candida infections

Fungal Resistance in Candida infections

Resistant C. glabrata Blood Stream Infections

Percent of resistant isolates

Alexander BD. <u>Clin Infect Dis</u>. 2013 Jun 15; 56(12): 1724–1732.

Hey Micro!!!

- Can you identify the yeast in the urine?
 - Community urine culture probably not critical
 - In ICU patient, can be very important!
- Can you give me susceptibilities?
 - In-house versus reference laboratory

GNR: Meropenem/Gentamicin GP: Linezolid AF: Anidulafungin

1 Day After Consult

- MF still on ventilator with sputum production
- Still febrile on vasopressors
- AST/ALT slightly improved
- Still on dialysis
- Sputum cultures from lab growing Klebsiella pneumoniae

K. Pneumoniae from OSH

Antimicrobial	Susceptibility
Ciprofloxacin	R
Pip/Tazobactam	R
Gentamicin	R
TMP-SMX	R
Meropenem	S
Tigecycline	R

2 Days After Consult

- MF still on ventilator, max FiO2, high positive ventilatory pressures
- Sputum production
- Max pressors, increased over last 24 hours

K. pneumoniae from Local Laboratory

Antimicrobial	Susceptibility
Ciprofloxacin	R
Pip/Tazobactam	R
Gentamicin	R
TMP-SMX	R
Meropenem	R
Tigecycline	R

Why the discrepancy?

OSH using old breakpoints, local hospital uses current breakpoints!

Enterobacteriaceae breakpoints

	Cur (M100	rent Breakpoi -S22) MIC (uç	ints g/mL)	Previous Breakpoints (M100-S19) MIC (ug/mL)						
<u>Antibiotic</u>	Susceptible	Intermediate	<u>Resistant</u>	Susceptible	Intermediate	<u>Resistant</u>				
Ertapenem	<0.25	0.5	<u>≥</u> 1	<u><</u> 2	4	<u>></u> 8				
Imipenem	<u>≤</u> 1	2	<u>></u> 4	<u><</u> 4	8	<u>></u> 16				
Meropenem	<u><</u> 1	2	<u>></u> 4	<u><</u> 4	8	<u>></u> 16				

Use of Updated breakpoints is supported by the CLSI, FDA, CDC, and IDSA

Humphries et al. J Clin Microbiology, 2015.

Use of current CLSI breakpoints

Why would anyone use the old CLSI breakpoints?

"The FDA and CLSI have supported the 2010 CLSI breakpoints for Enterobacteriaceae.

Not all automated laboratory systems have updated their breakpoints."

K. pneumoniae final results

Antimicrobial	Susceptibility
Meropenem	R
Meropenem MIC	2

Do we really care if the MIC is <=1 versus 2-4 mcg/ml?

Clinical Outcomes of *Enterobacteriaceae* Infections Stratified by Carbapenem MICs

Twisha S. Patel, Jerod L. Nagel Departments of Pharmacy Services and Clinical Sciences, University of Michigan Health System and College of Pharmacy, Ann Arbor, Michigan, USA

- Matched cohort analysis of adult patients
- Enterobacteriaceae infections treated with carbapenems
- Compared MIC of 2-8 mcg/ml versus <a>

Does knowing the MIC matter?

TABLE 3 Clinical outcomes stratified by carbapenem MIC

	Value		
Outcome	MIC of ≤ 1 mg/liter	MIC of 2-8 mg/liter	P value
No. of patients with 30-day mortality/total number of patients (%)	1/18 (5.6)	7/18 (38.9)	0.04
Mean total hospital length of stay \pm SD, in days	34.4 ± 25	57.6 ± 45	0.06
Mean ICU length of stay \pm SD, in days	21.7 ± 19	56.6 ± 44	< 0.01
No. of patients with 30-day hospital readmission/total number of patients (%)	3/17 (17.6)	3/11 (27.3)	0.65

Patel et al. Journal of Clinical Medicine. 2015

Does knowing the MIC matter?

- Carbapenems are un-reliable when the MIC is <a>2 mcg/ml
- Failure of carbapenems at MIC
 <u>></u> 2 mcg/ml is largely due to the pharmacokinetics of the drug
- Carbapenems work by time-dependent killing, measured as time above the MIC

GPC: Linezolid

GNR: Meropenem/Gentamicin

Ceftazidime-Avibactam Meropenem Colistin Inhaled

Other: Anidulafungin

GPC: Linezolid

GNR: Meropenem/Gentamicin

Ceftazidime-Avibactam Plazomicin

Meropenem Colistin Inhaled

Other: Anidulafungin

8 Days After Consult

- MF still on ventilator, but sputum production nearly resolved
- Afebrile
- Off Pressors
- Still on Dialysis, but urine output improving
Summary

- Dealing with MDRO infections is challenging and complex
- Develop your relationship with the microbiology laboratory to understand your local limitations;
 - Breakpoints
 - Antifungal Drug Testing
 - Rapid Diagnostics
- Critical microbiology results can improve care, particularly for critically ill patients