Reflections From The Frontlines: Collateral Damage from Covid in Terms of Antimicrobial Resistance

James McKinnell, MD Infectious Disease Specialist Milefchik-Rand Medical Group

Learning Objectives

- Discuss the front-line challenges of COVID-19 from a clinical and laboratory perspective
- Describe the impact of the COVID-19 pandemic on Antimicrobial Stewardship Principles
- Examine the potential longer-term consequences of a viral pandemic on emerging bacterial resistance

- Directly involved in LA County Response to Covid in Long Term Care – SNFs and LTAC
- Collaborated with Orange County Healthcare Association on Covid Outbreak Responses – over 300 outbreaks
- Infectious Disease Physician directly involved in patient care throughout the pandemic.
- The opinions expressed here are my own mostly developed from trial and error experience with Covid.

US Causes of Death

	2019	Deaths
1	Heart Disease	659,000
2	Cancer	599,000
3	Accidents	173,000
4	Chronic Lung Disease	157,000
5	Stroke	150,000

https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm Accessed 10/26/2021, rounded to the nearest thousand deaths.

Seasonal Influenza 2019-2020

COVID-19 (Feb 2020 – May 2021)

- 38 Million Infections
 37 Million Infections
- 400,000 Hospitalizations 2,200,000 Hospitalizations
- 21,000 Deaths 583,596 Deaths

https://covid.cdc.gov/covid-data-tracker/#cases_casesinlast7days Accessed on 5/18/2021 https://covidtracking.com/data/national Accessed on 9/24/2020

https://www.cdc.gov/flu/about/burden/index.html accessed 3/10/2020

US Causes of Death

	2019	Deaths
1	Heart Disease	659,000
2	Cancer	599,000
3	COVID 2020/2021	583,596
4	Accidents	173,000
5	Chronic Lung Disease	157,000
6	Stroke	150,000

https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm Accessed 10/26/2021, rounded to the nearest thousand deaths.

https://covid.cdc.gov/covid-data-tracker/#cases_casesinlast7days Accessed on 5/18/2021 Accessed 9/24/2020.

What Happened?

7

SARS CoV-2

- Related to Bat Coronavirus (BatCov RaTG13)
- Related to SARS CoV-1 (2003)

Zhou et al, Nature. February 3, 2020

SARS CoV-2

- Cross Species Recombination with Pangolin Virus
- Likely emerged in November, 2019

Zhou et al, Nature. February 3, 2020

Wuhan Market

https://www.nytimes.com/2020/01/25/world/asia/china-markets-coronavirus-sars.html

other data as of 6 a.m. ET. Japan data excludes 696 cruise ship passengers.

Global Distribution of Cases 3/10/20

Importation of Coronavirus to US

Seattle Boston ew York •Detroit Chicago Washington D.C. San Francisco •Denver ·Las Vegas Angeles •Columbia •Atlanta •Dallas/Fort Worth •New Orleans Houston •Miami 1.42 Honolulu/Oahu 57 **Relative Risk** 0.315 - 1.000 JOHNS HOPKINS WHITING SCHOOL of ENGINEERING 0.003 - 0.018 Center for Systems Science States with reported 2019-nCoV, Jan 29 and Regimeering

Risk of 2019-nCoV Importation in U.S. Cities

Global Distribution of Cases 3/16/20

Three Factors For US Spread

Asymptomatic transmission can occur

Letter to the Editor NEJM, https://www.nejm.org/doi/full/10.1056/NEJMc2001468

Break Down in Infection Protection

Social Distancing

> Work and Home

Hand Hygiene **Properly** And Timely

Hand Discipline

Wash Hands Above Shirt Collar or Below Your Belt !!

Using Alcohol-Based Hand Rub

Apply a squirt onto the palm of one hand

Rub Palms Together

- Back of Hand
- Between fingers
- Wrist
- Thumb
- Finger Tips

Break Down in Infection Protection

Prevent Transmission

- 1. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus– Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585
- 2. Providence-St. Joseph and Hoag Hospital unpublished data

Prevent Transmission??

More is not better!

Wuhan City, China¹

USA Hospitals²

<3%

1. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus– Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585

2. Providence-St. Joseph and Hoag Hospital unpublished data

What Were The Breakthroughs

- Laboratories Ramp Up Testing Capacity
- Effective Outbreak Response in SNFs

Implementation of Rapid Testing

US Develops Mass Testing Strategy

Frequency of routine testing for COVID-19 in high-risk healthcare environments to reduce outbreaks

Elizabeth T Chin BS^{1†}, Benjamin Q Huynh BS^{1†}, Lloyd A. C. Chapman², Matthew Murrill MD PhD², Sanjay Basu MD PhD^{3,4,5}, and Nathan C Lo MD PhD²

https://www.medrxiv.org/content/10.1101/2020.04.30.20087015v4, Accessed on September 29, 2020

What Were The Breakthroughs

- Laboratories Ramp Up Testing Capacity
- Effective Outbreak Response in SNFs

SNF Outbreak Mitigation Strategies

Outbreak Response Crafted around limited PPE

- RED ZONE Confirmed Covid *PPE while on Unit
- YELLOW ZONE Exposed or Recovering Covid *Change Prior to Room Entry

GREEN ZONE – Unexposed

COVID Outbreaks in OC LTCF

Facilities with Outbreaks

Expert Stewardship Responded to over 300 LTCF Outbreaks!

The Red Zone Was Effective, But Problematic

Surveillance Organisms

- Methicillin Resistant *Staphylococcus aureus* (MRSA)
- Vancomycin Resistant Enterococcus (VRE)
- Extended Spectrum Beta Lactamase Producers (ESBLs)
- Carbapenem Resistant Enterobacteriaceae (CRE)

Protect Pilot, SHIELD OC, PROTECT TRIAL, CLEAR TRIAL For Expert Stewardship Use, Not for Distribution or Re-Use

Surveillance Sites for MDRO

MDRO Carriage in Long Term Care

	Residents Swabbed	Any MDRO	MRSA	VRE	ESBL	CRE
Nares	1,397	29%	29%	-	-	-
Axilla/Groin	1,400	39%	24%	7%	16%	1%
All Body Sites	1,400	49%	37%	7%	16%	1%

49% MDRO carriers, facility range 24-70% Among MDRO pathogens detected, only 12% known to facility

For Expert Stewardship Use, Not for Distribution or Re-Use

Only 4% of MDRO Carriers are Known

The iceberg of MDRO colonization in skilled nursing facilities. (1) Nearly half (48%) of nursing home residents are colonized with MDRO. The top "exposed" portion of the iceberg represents the (4%) of patients for whom point prevalence survey confirmed previously known colonization status (n = 53 residents). (2) Most of the MDRO colonization is unknown to the facility, with 45% of residents representing the unknown submerged iceberg population of previously unknown MDRO colonization. Of the NH population, 39% (n = 552 residents) had no history of MDRO, but point prevalence survey identified MDRO Carriage. In addition, 5% of the NH population (n = 75 residents) had a history of an MDRO, but point prevalence survey identified an additional MDRO unknown to the facility.

For Expert Stewardship Use, Not for Distribution or Re-Use McKinnell et al. AMDA

Environmental Contamination

- Bed Rails
- Bed Frames
- Tray Table
- Bedside Table
- Handles
- IV Poles
- BP Cuff

For Expert Stewardship Use, Not for Distribution or Re-Use

MDRO Environmental Contamination Resident Room Objects

Object Type	# Objects Swabbed	Any MDRO	MRSA	VRE	ESBL	CRE
Bedside Table/Bedrail	84	55%	31%	29%	5%	0%
Call Button/ TV Remote/Phone	84	35%	23%	15%	1%	0%
Door Knobs	84	33%	24%	12%	1%	0%
Light Switch	84	26%	18%	8%	1%	0%
Bathroom Rail/Sink/Flush Handle	84	38%	23%	20%	5%	1%
Any Object	420	37%	24%	17%	3%	0.2%

For Expert Stewardship Use, Not for Distribution or Re-Use
MDRO Environmental Contamination Common Area Objects

Object Type	# Objects Swabbed	Any MDRO	MRSA	VRE	ESBL	CRE
Nursing Station Counter or Cart	28	57%	43%	32%	0%	0%
Table*	28	54%	39%	29%	4%	0%
Chair*	28	46%	29%	18%	0%	0%
Hand Rail (hallway)	28	61%	32%	32%	4%	0%
Drinking Fountain or Drinking Station	28	32%	25%	11%	0%	0%
Any Object	140	50%	34%	24%	1%	0%

*Dining hall or activity room

For Expert Stewardship Use, Not for Distribution or Re-Use

Environmental Contamination with MDROs – Common Area Objects

Object Type # Objects Swabbed	Any MDRO	MRSA	VRE	ESBL	CRE
Nursing Station Counter or Cart 28	57%	43%	32%	0%	0%
Bathroom Rail/Sink/Flush Handle	38%	23%	20%	5%	1%

For Expert Stewardship Use, Not for Distribution or Re-Use

The Red Zone Was Problematic

- Constant Use PPE Resulted in Spread of Pathogens
- CRE
- MDR Acinetobacter
- C. Auris

Orange County, California Ideal Virtual Laboratory

- Relatively enclosed
 - Ocean to West
 - Forest to East
 - Undeveloped land to South
 - Traffic to North

For Expert Stewardship Use, Not for Distribution or Re-Use

Orange County

- 32 Acute Care Hospitals
 - 6 Long-Term Acute Care Hospitals (LTACs)
 - 2 Dedicated Children's Hospitals
- 71 nursing homes
- Serves population of 3.1 million (6th largest US county)
- >320,000 admissions annually

Huang SS et al. Infect Control Hosp Epidemiol 2010. 31(11):1160-9

For Expert Stewardship Use, Not for Distribution or Re-Use

Hospitals Share Patients – Direct

Huang SS et al. Infect Control Hosp Epidemiol 2010. 31(11):1160-9 For Expert Stewardship Use, Not for Distribution or Re-Use

Hospitals Share Patients-Indirect

Huang SS et al. Infect Control Hosp Epidemiol 2010. 31(11):1160-9 For Expert Stewardship Use, Not for Distribution or Re-Use **43**

Sharing Patients – 10 Patients

Lee BY et al. Plos ONE. 2011;6(12):e29342 For Expert Stewardship Use, Not for Distribution or Re-Use

HOSPITAL MANAGEMENT OF COVID

Recovery Trial of Steroids in Covid

A All Participants (N=6425)

https://www.nejm.org/doi/10.1056/NEJMoa2021436

Science Determines Best Treatment

NIH Recommendations by Month

Gray = insufficient data;

Orange = not recommended except in a clinical trial;

Red = recommend AGAINST;

Blue = recommended for some patients

Drug	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan21	Feb	Mar
Remdesivir												
HCQ (+/-Azithro)												
lvermectin												
Anti-SARS-CoV2 Antibody												
Convalescent Plasma												
Corticosteroids												
Colchicine												
Fluvoxamine												
Tocilizumab												
(room to add)												

Spectrum of Disease and Therapy

Current therapies (darker gradient used to imply strength of evidence)

https://doi.org/10.1016/j.healun.2020.03.012

Hospital Management Of Covid

- Anti-Viral Treatment
 - Remdesivir
- Cytokine Release Syndrome/Cytokine Storm
 - Corticosteroids
 - Tocilizumab/Baricitinib
- Hypercoaguable State
 - Prophylactic Dosing
 - "Intermediate Dose"
 - Full Dose Anticoagulation (NEJM August 2021).

How can the Laboratory Play A Role

- Covid Testing
 - Cycle Threshold
 - SARS Specific Versus Multiplex Testing
- Procalcitonin Evaluation
 - The Infectious Disease Doctor's Crutch
- Antimicrobial Susceptibility Testing
 - Help when we really need it.

Case Presentations

- The following descriptions are of a real cases that I managed
- I will discuss use of antibiotics that may not follow FDA approved indications, but do follow generally accepted clinical practice
- Identifying information has been changed

- 72 year old female with fever and cough.
- PMH: moderate dementia.
- T:101.2 BP:106/62 R: 28 S:92%
- Rousable, but sleepy
- Frail, Nasal Canula at 4 liters
- Slight temporal wasting
- RLL Rhonchi

RLL Pneumonia

- Bacterial Infection?
- Influenza?
- Aspiration?
- Covid?

Rapid COVID Diagnosis allows rapid initiation of treatment and improved outcomes

- Remdesivir
- Solumedrol 40 mg IV BID
- Prophylactic Lovenox
- Antimicrobials?

- Completed 5 Days Remdesivir
- Switched to Prednisone Taper
- Discharged on Day 8 to SNF.

72 year old female, previously treated for COVID, has a mechanical fall in her SNF.

PMH: moderate dementia, Covid 92 days prior.

T:98.6 BP:106/62 R: 22 S:92%

- Alert
- Frail
- Slight temporal wasting
- Bruise on back of head

Head CT – no Bleed

COVID Nares PCR positive

Cycle Threshold 36 (Postive <37)

Repeat in AM Negative

Out of Isolation in Hospital

Isolation Required in SNF

Charlie

36 year male, on PREP for HIV, admitted with fever and cough. Unvaccinated for COVID.

PMH: none

- T:102.2 BP:106/62 R: 28 S:88%
- Alert, Coughing
- Nasal Canula at 4 liters
- Right Mid Lung

Faint RML Pneumonia

Chlamydia Pneumoniae

- Obligate Intracellular Pathogen
- Azithromycin is standard treatment
- Continued Ceftriaxone/cefdinir as may be part of a polymicrobial infection.
- Patient improved on day 3 and was discharged on oral antimicrobials.

How can the Laboratory Play A Role

- Covid Testing
 - Cycle Threshold
 - SARS Specific Versus Multiplex Testing

Procalcitonin Evaluation

- The Infectious Disease Doctor's Crutch
- Antimicrobial Susceptibility Testing
 - Help when we really need it.

Linus

78 year old male with fever and cough.

PMH: severe dementia. ESBL pyelonephritis recently completed meropenem.

- T:101.2 BP:106/62 R: 28 S:78%
- Rousable, but sleepy
- Frail, High Flow Oxygen at 30 Liters and 100%
- Diminished Breath Sounds Bilaterally

RLL Pneumonia

- WBC 19K
- CRP 18
- D-Dimer 500
- Procalcitonin 0.2

Linus

- Remdesivir
- Solumedrol 40 mg IV BID
- Tocilizumab
- Intermediate Dose Lovenox
- No Antimicrobials

Linus Hospital Day 14

- T: 102 BP:92/60 P: 115 On Pressors
- Remdesivir completed
- Solumedrol 40 mg IV BID
- Tocilizumab x2
- Intermediate Dose Lovenox-Heparin gtt?
- Antimicrobials?

Inadequate antimicrobial therapy associated with higher mortality

1999;115:462-474.

Relationship between survival and time to effective antimicrobial treatment among patients with septic shock

Retrospective multi-center study (n=2731)

Time from hypotension onset (hours)

Kumar A, et al. Crit Care Med 2006; 1589-1596 (June)

Empiric combination therapy is associated with higher rates of early, appropriate therapy for patients with sepsis due to Gram-negatives

Retrospective study (n=760)

Micek S T et al. Antimicrob. Agents Chemother. 2010;54:1742-1748

GNR: Meropenem/Gentamicin

Acinetobacter baumannii.

Antimicrobial	Susceptibility	
Amikacin	R	>32
Amp/Sulbactam	R	>64
Ceftazidime	R	>16
Meropenem	R	>8
Piperacillin/Tazo	R	>64
Tobramycin	R	>8

Acinetobacter baumannii. Extended Panel

Antimicrobial	Susceptibility	
Cefiderocol	I	8
Ceftazidime/Avi	R	>32
Eravacycline		0.5
Mero/Vabor	R	>16
Linus

- Culture Results are Current as of Slide Presentation
- Outcome pending

Collateral Damage From Covid

- Pathogen Spread in Nursing Homes
- Confusing and Overlapping Clinical Syndromes
- Prolonged Hospital Stays in Complex Patients with Prolonged ICU and Antibiotic Exposures

How can the Laboratory Play A Role

- Covid Testing
 - Cycle Threshold
 - SARS Specific Versus Multiplex Testing
- Procalcitonin Evaluation
 - The Infectious Disease Doctor's Crutch
- Antimicrobial Susceptibility Testing
 - Help when we really need it.

Thank You for Listening!!!