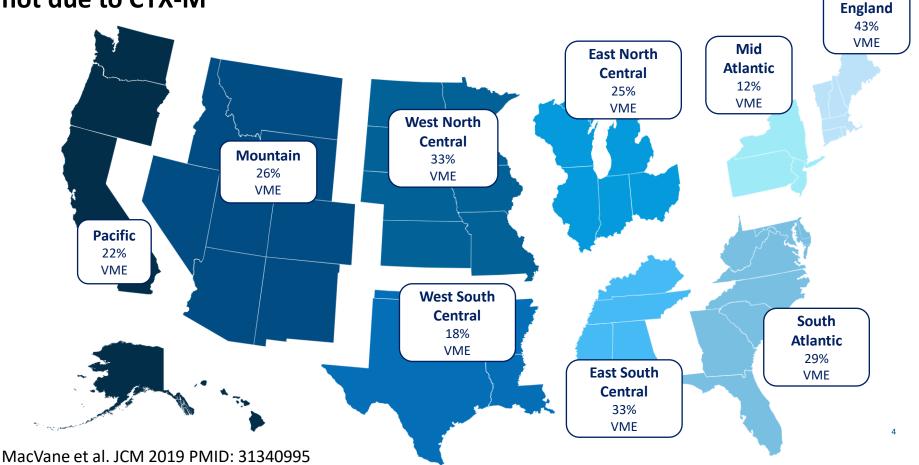
INTERDISCIPLINARY TEAMS ARE KEY TO SUCCESSFUL ANTIMICROBIAL STEWARDSHIP

Nathan A Ledeboer Professor of Pathology and Vice Chair Department of Pathology Medical College of Wisconsin

Associate Chief Medical Officer for Laboratory Services Froedtert Health Milwaukee, WI

OUTLINE


- Case
- Why do we engage in stewardship?
- What shifted during the pandemic?
- What impact will changes resulting from the pandemic have on antibiotic prescribing?
- The role of testing and the laboratory in stewardship
- What broad changes will occur in healthcare as a result of the pandemic and what impact will this have an impact on AMS?
- Some recommendations we can consider

Case 1

- 68 YO male with progressing myelofibrosis
- 46 d post BMT
 - Not engrafted
- On immunosuppression regime, neutropenic
- Feeling tired, weak and has diarrhea
- Spikes fever at home to 102.7°F
- In ER:
 - Complains of flank pain and burning on urination
 - WBC <0.1 K
 - Urine, sputum and blood grow K. pneumoniae
 - CTX-M not detected on blood culture PCR test

K. pneumoniae	
Ampicillin	R
Aztreonam	I
Cefazolin	R
Cefepime	S
Ceftazidime	S
Ceftriaxone	R
Ciprofloxacin	S
Gentamicin	S
Levofloxacin	S
Meropenem	S
Pip-tazo	S
Trimeth-sulfa	S

20% of ceftriaxone resistance in *E. coli* and *Klebsiella* not due to CTX-M

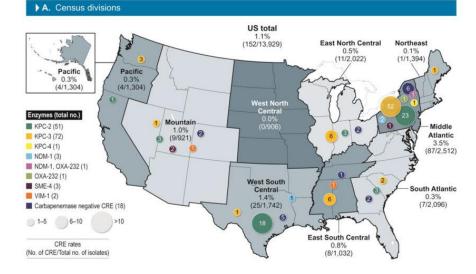
New

Case 1: MIC Results

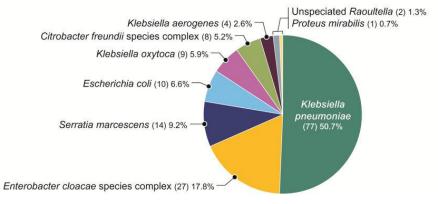
K. pneumoniae	MIC (µg/ml)			
Ampicillin	>16	R		
Aztreonam	16	I.		
Cefazolin	>16	R		
Cefepime	8	S		
Ceftazidime	8	S		
Ceftriaxone	8	R		
Ciprofloxacin	≤0.25	S		
Gentamicin	≤2	S		
Levofloxacin	≤0.5	S		
Meropenem	≤0.5	S		
Pip-tazo	16/4	S		
Trimeth-sulfa	≤0.5	S		

K. pneumoniae	MIC (με	g/ml)	Breakpo	oint Applied						
Aztreonam	16	I.	Obsolet	e (pre-2010)						
Cefepime	8	S	Obsolet	e (pre-2014)						
Ceftazidime	8	S	Obsolet	e (pre-2010)						
Ceftriaxone	8	R	С	urrent						
Meropenem	≤0.5	S	С	urrent						
Pip-tazo	16/4	S	Obsolet	Obsolete (pre-2022)		rrent		Obsol	ete	
	M/by/2				S	I/SDD	R	S		R
	Why? Laboratory			Aztreonam	≤4	8	≥16	≤8	16	≥32
	cleared for meropener			Cefepime	≤2	4-8	≥16	≤8	16	≥32
	aztreonam	, <mark>cefepin</mark>	ne,	Ceftazidime	≤4	8	≥16	≤8	16	≥32
	ceftazidime	e or pip-t	azo	Ceftriaxone	≤1	2	≥4	≤8	16-32	≥64
				Meropenem	≤1	2	≥4	≤4	8	≥1(

CLSI. M100 S32, 2022. CLSI, Wayne, PA. Humphries et al. 2019. JCM. 57(9):e00203-19


Aztreonam	≤4	8	≥16	≤8	16	≥32
Cefepime	≤2	4-8	≥16	≤8	16	≥32
Ceftazidime	≤4	8	≥16	≤8	16	≥32
Ceftriaxone	≤1	2	≥4	≤8	16-32	≥64
Meropenem	≤1	2	≥4	≤4	8	≥16
Pip-tazo	≤8	16	≥32	≤16	32-64	≥128

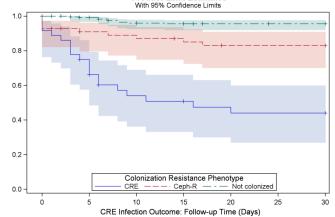
WHY DO WE ENGAGE IN STEWARDSHIP


RESISTANCE IS FALLOUT OF INAPPROPRIATE USE OF ANTIMICROBIALS IN DIFFERENT SETTINGS

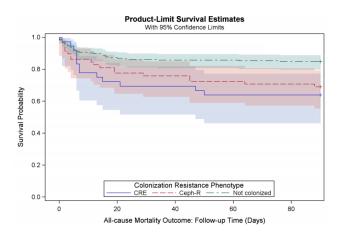
- In animals and plants:
 - Therapeutic and non-therapeutic (e.g. as growth promoters)
- In community acquired infections
- In hospital-associated infections
- Irrational use of antibiotics is the greatest driver of resistance
 - **50%** of antibiotics are prescribed inappropriately
 - **50%** of patients have poor compliance
 - **50%** of populations do not have access to essential antibiotics

PREVALENCE IS KEY

B. Species


ARE CRE MORE IMPORTANT?

Comparing MDROs


- CRE vs ESBL
 - GI colonization is independent risk factor for CRE infection
 - Mortality following CRE BSI is up to $51\mathchar`-65\%$

	Not colonized (n=244)	Ceph-R (n=58)	CRE (n=36)
30-day infection	2.8% (7/244)	3.4% (2/58)	47% (17/36)
90-day mortality	15% (37/244)	31% (18/58)	36% (13/36)
		D = 10 = 0 (2 = 0 + 1 = 0)	0.0007

Risk of CRE infection if colonized OR 10.8 (2.8-41.9), p=0.0006

Product-Limit Estimates

McConville TH et al. PLOS one 2017; 12(10):e0186195

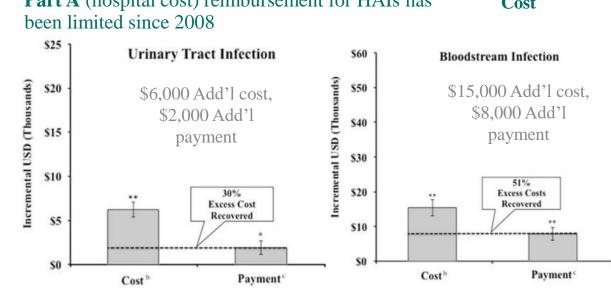
IMPACT OF MDR INFECTIONS

TABLE 1

Attributable Cost of a Hospital-Onset Health Care-Associated Infection^a

Method of Measurement	Estimated Cost per Infection
Generalized linear regression model	\$20,888
OLS linear regression	\$19,917
OLS linear regression: total cost minus MD and procedures	\$18,615
Propensity score-matched comparison	\$19,251
OLS linear regression; 98% Winsorized	\$15,203
LOS multiplied by mean non-HAI cost per day	\$15,149
OLS linear regression; 95% Winsorized	\$11,299
3S-PHM LOS multiplied by mean non-HAI cost per day	\$9,310

- Cost to whom?
 - Institution, third party payor, individual, society

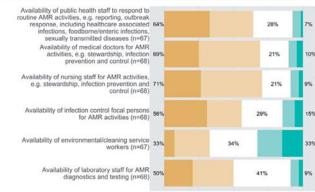

TABLE 2

Estimates of Attributable HAI Cost Estimates From Literature Reviews

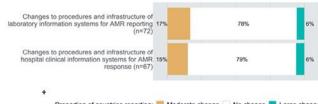
НАІ Туре	Zimlichman et al ¹⁵	NORC Report ¹⁶		
Catheter-associated urinary tract infections	\$924	\$13,793		
Central line-associated bloodstream infections	\$47,254	\$48,108		
Surgical site infections	\$21,438	\$28,219		
Ventilator-associated pneumonia	\$41,406	\$47,238		
Hospital-acquired antibiotic-associated Clostridium difficile	\$11,640	\$17,260		
Abbreviation: HAI, health care-associated infection; NORC, the nonpartisar	n and objective research organization NORC at the	e University of Chicago.		

IMPACT OF MDR INFECTIONS

- Cost to whom?
 - Institution, third party payor, individual, society

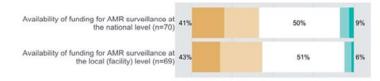


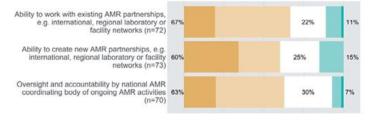
Part A (hospital cost) reimbursement for HAIs has Cost


WHAT SHIFTED DURING THE PANDEMIC?

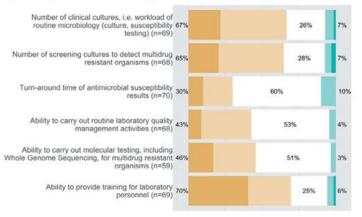
THE IMPACT ON STAFFING – DATA FROM THE WHO GLOBAL AMR AND USE SURVEILLANCE SYSTEM (GLASS)

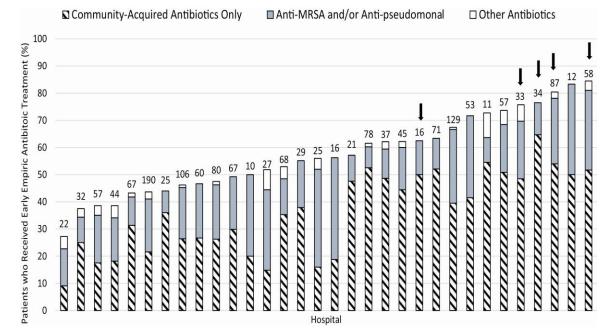
e. Reported impact of COVID-19 on the availability of staff responsible for AMR activities


f. Reported impact of COVID-19 on AMR data information systems +


Proportion of countries reporting: 📕 Moderate change 🗌 No change 📃 Large change

J Antimicrob Chemother, Volume 76, Issue 11, November 2021, Pages 3045–3058, <u>https://doi.org/10.1093/jac/dkab300</u>


a. Reported impact of COVID-19 on funding for AMR activities


b. Reported impact of COVID-19 on partnerships and oversight for AMR activities

c. Reported impact of COVID-19 on diagnostics and laboratory testing for AMR

EARLY EMPIRIC ANTIBIOTIC TREATMENT IN HOSPITALIZED PATIENTS WITH COVID-19, BY HOSPITAL IN MICHIGAN

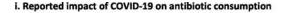
56.6% OF PATIENTS RECEIVE EMPERIC ABX DESPITE 3.5% HAVING DOCUMENTED COMMUNITY-ONSET BACTERIAL CO INFECTION

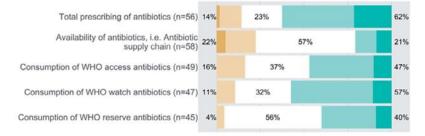
Vaughn VM et al. Clin Infect Dis, Volume 72, Issue 10, 15 May 2021, Pages e533-e541, https://doi.org/10.1093/cid/ciaa1239

COINFECTIONS AND SECONDARY INFECTIONS

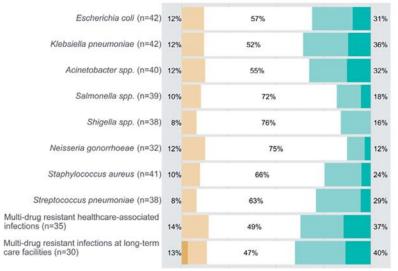
- 71.8% of patients received ABX
- 3.5% Co-infections
- 14.3% Secondary infections

Langford BJ et al. PMID 32711058

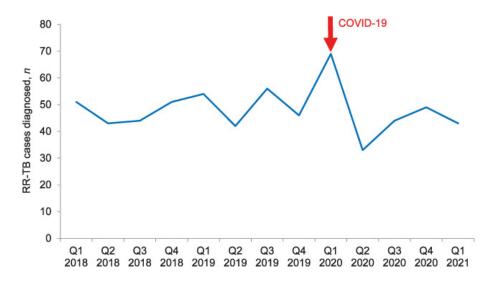

Study	Patients % Info	ected	95% C.I.					
Category = Co-infection								
Arentz M, 2020	21	4.8	[0.1;23.8]	-				
Barrasa H, 2020	48		[4.7; 25.2]					
Bhatraju P, 2020	15		[0.0; 21.8]					
Chen N, 2020	99		[0.0; 5.5]					
Chen T, 2020	203		[0.1; 3.5]					
Liu W, 2020	78		[0.0; 4.6]					
Liu Y, 2020	12	16.7	[2.1; 48.4]					
Mo P, 2020	155	1.3	[0.2; 4.6]	-				
Pongpirul W, 2020	11	45.5	[16.7; 76.6]				_	
Tan Y, 2020	10	0.0	[0.0; 30.8]	•	-			
Wang Z, 2020	29		[2.2; 27.4]					
Wu C, 2020	148	0.0	[0.0; 2.5]					
Wu J, 2020	280	2.1	[0.8; 4.6]	-				
Wu J, 2020	80		[0.0; 4.5]					
Xia W, 2020	20		[5.7; 43.7]					
Young B, 2020	18		[0.0; 18.5]					
Zheng F, 2020	25		[4.5; 36.1]					
Percent with Bacterial Infection		3.5	[0.4; 6.7]	•				
Heterogeneity: $I^2 = 57\%$, $\tau^2 = 0.0029$, χ	$p_{16}^2 = 36.86 \ (p < 0.01)$							
Category = Secondary								
Cai Q, 2020	298	10.1	[6.9; 14.1]	-				
Feng Y, 2020	410	8.5	[6.0; 11.7]	—				
Lian J, 2020	788	0.0	[0.0; 0.5]					
Ling L, 2020	8	25.0	[3.2; 65.1]					
Wang L, 2020	339	42.2	[36.9; 47.6]					
Yang X, 2020	52		[5.6; 25.8]					
Zhou F, 2020	191		[10.0; 20.5]					
Percent with Bacterial Infection		14.3	[9.6; 18.9]	-				
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0029$, χ	$p_6^2 = 360.33 \ (p < 0.01)$							
Percent with Bacterial Infection		6.9	[4.3; 9.5]	•				
Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0.0029$, χ	2 ₂₃ = 401.39 (p < 0.01)						
Residual heterogeneity: I^2 = 94%, χ^2_{22} =	397.19 (p < 0.01)			0 20	40	60	80	100
				Percent v	with Ba	cterial	Infecti	on

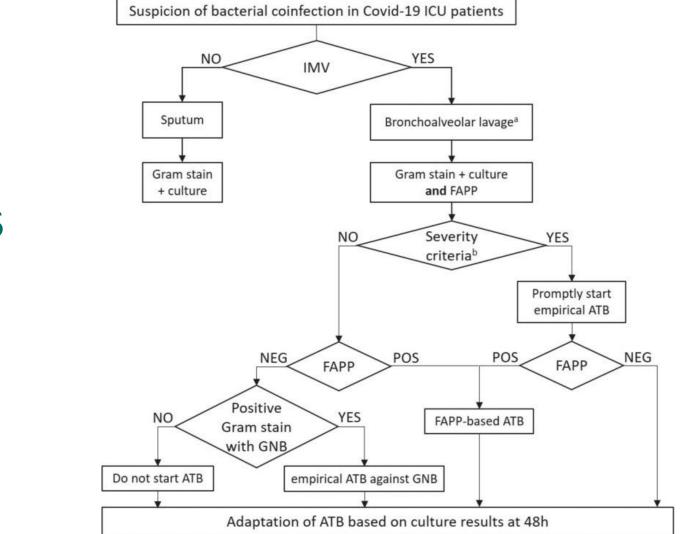

COMMON EMPIRIC AGENTS GIVEN DURING PANDEMIC

Antibiotic Class	Patients receiving antibiotics with antibiotic class reported (total=153)
	(n, % of total)
Fluoroquinolones	83 (54.2)
2 nd or 3 rd Generation Cephalosporins	30 (19.6)
Beta-Lactams	15 (9.8)
Linezolid	9 (5.9)
Macrolides	10 (6.5)
Beta-Lactam/Beta-Lactamase Inhibitors	4 (2.6)
Carbapenems	2 (1.3)


WHAT IMPACT WILL CHANGES RESULTING FROM THE PANDEMIC HAVE ON ABX USAGE?

ABX RESISTANCE RATES




j. Reported impact of COVID-19 on antimicrobial resistance rates

J Antimicrob Chemother, Volume 76, Issue 11, November 2021, Pages 3045–3058, https://doi.org/10.1093/jac/dkab300

Mohr-Holland E et al. PMID 34802503

RAPID DIAGNOSTICS AND AMS

Novy E et al. PMID 34364096

DIAGNOSTICS ARE CRITICAL TO STEWARDSHIP, BUT LABORATORY EXPERTISE IS ESSENTIAL FOR INTERPRETATION, AN EXAMPLE

CULTURE-BASED SCREENING

Broth enrichment, direct plating, antibiotic, chromogenic medium?

48 h for prelim CRE screen, 72 h for confirmatory CP-CRE result

Medical College of Wisconsin CONFIDENTIAL. Do not share.

AN IMPORTANT CONSIDERATION TO CULTURE

 TABLE 2 Performance characteristics of the various methods to detect carbapenem-resistant organisms and KPC-producing organisms from rectal swabs

Performance	% (95% CI) by ^b :			
characteristic ^a	CDC	Direct MAC	chromID CARBA	Check-Direct CPE screen
Sensitivity				
CROs	55.0 (32.0-76.2)	95.0 (73.1–99.7)	75.0 (50.6-90.4)	
CPOs	40.0 (7.3-83.0)	80.0 (29.9–98.9)	100 (46.3–100)	100 (46.3–100)
Specificity				
CROs	91.7 (86.7–95.0)	91.2 (86.0–94.6)	94.3 (89.8–97.0)	
CPOs	88.0 (82.3–91.9)	84.6 (78.8–89.1)	89.9 (84.8–93.5)	97.6 (94.2–99.1)
PPV				
CROs	40.7 (23.0-61.0)	52.7 (35.7-69.2)	57.7 (37.2-76.0)	
CPOs	7.4 (1.3–25.8)	11.1 (3.6–27.0)	19.2 (7.3–40.0)	50.0 (20.1–79.9)
NPV				
CROs	95.2 (90.7–97.6)	99.4 (96.4–100)	97.3 (93.5–99.0)	
CPOs	98.9 (95.0–99.6)	99.4 (96.4–100)	100 (97.5–100)	100 (97.7–100)

CDC "Broth enriched"

* *Lower sensitivity* than direct plating to MAC or Chromogenic

Overgrowth of *Pseudomonas*, and other erta-R NLFs

Specificity

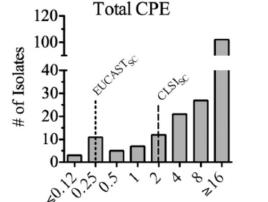
* Similar between methods (90%)

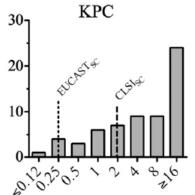
Low prevalence population (screening)

* PPV for CP-CRE ${<}10\%$

Unnecessary isolation, materials

Medical College of Wisconsin CONFIDENTIAL. Do not share.

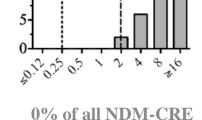



Simner PJ et al. J Clin Microbiol 2013 (54)6:1664-1667

CULTURE-BASED SCREENING

Why do culture methods come up short for detection of KPC and CP-CRE?

- Variable expression!
 - 189 isolates CP Enterbacterales


25% of all KPC-CRE

40% of all OXA-CRE

OXA-48-like

20-

10-

NDM

eUCAST&

80-

70-

15-

10-

20% of all CP-CRE have 25% of all MIC categorizing them as meropenem-susceptible

DOES A MOLECULAR APPROACH MAKE SENSE?

Strengths and considerations for a molecular approach to screening

- Speed \rightarrow On-demand and batch platforms \rightarrow Result in as little as 2 h
- Comprehensive → Molecular multiplexing for major carbapenemase genes
- Sensitive → LoD superior to culture

Target gene	Sensitivity (% [95% CI])	Specificity (% [95% CI])	PPV (%)	NPV (%)
IMP-1	96.3 (81.0-99.9)	100 (99.4–100)	100	99.8
VIM	93.5 (78.6-99.2)	99.8 (99.1-100)	96.7	99.7
NDM	100 (86.8-100)	99.8 (99.1-100)	96.3	100
KPC	96.7 (82.8-99.9)	99.3 (98.3–99.8)	87.9	99.8
OXA-48	95.0 (83.1-99.4)	99.8 (99.1-100)	97.4	99.7

Xpert vs. Enriched culture: n=633 (383 clinical + 250 contrived)

DOES A MOLECULAR APPROACH MAKE SENSE?

Strengths and considerations for a molecular approach to screening

- Cost and throughput?
 - Lower cost S-R "batch" and manual tests available

FDA-cleared CPO

RUO MDRO panel

KPC NDM VIM/IMP OXA-48 (12/run, 2.5 h)

KPC CTX-M NDM vanA VIM mcr-1 IMP OXA-48 (3 h)

DOES A MOLECULAR APPROACH MAKE SENSE?

Additional benefits to a molecular approach

- Rapid differentiation of resistance targets
 - Epidemiology
 - Surveillance what resistance is circulating?
 - Early recognition of potential outbreak introduction of uncommon gene e.g. NDM

- Treatment

- o Enzyme specificity of "novel" B-lactam/B-lactamase antibiotics
- Metallo vs serine
- May also be used for rapid testing of clinical isolates

DOES AN ACCURATE MIC CONTRIBUTE TO LAB/ANTIMICROBIAL STEWARDSHIP?

CORRELATION OF ETEST AND BMD

Table 1. Colistin (COL) and Polymyxin B (PB) Isolates (n=143) Found Nonsusceptible (NS) by Etest and Broth Microdilution (BMD) and Essential and Categorical Agreement Between Minimal Inhibitory Concentrations by Organism for Each Method

Organism	# COL-NS by Etest (% R)	# COL-NS by BMD (% R)		Categorical Agreement (%)	# PB-NS by Etest (% I or R)	# PB-NS by BMD (% R)		Categorical Agreement
Enterobacteriaceae (n=39)	1/39 (3) R	7/39 (18) R	22/39 (56)	33/39 (85)	1/39 (3) R	7/39 (18) R	17/39 (44)	33/39 (85)
Pseudomonas aeruginosa (n=44)	2/44 (5) R	0/44 (0)	21/44 (48)	42/44 (95)	6/44 (14) I/R	0/44 (0)	26/44 (59)	38/44 (86)
Acinetobacter baumannii (n=60)	1/60 (2) R	9/60 (15) R	41/60 (68)	52/60 (87)	0/60 (0)	5/60 (8) R	44/60 (73)	55/60 (92)

I, intermediate; R, resistant.

Medical College of Wisconsin CONFIDENTIAL. Do not share.

Simar et al. 2017. Ochsner J. 17:239-242

knowledge changing life

BMD VERSUS EVERYTHING ELSE

Organism	Number of isolates	Colistin	reference M	IC (mg/L)							
		0.25	0.5	1	2	4	8	16	32	64	128
Escherichia coli	14	1	3	1		8	1				
Klebsiella pneumoniae	18		4	2	2		4	4	2		
Pseudomonas aeruginosa	21	1	2	7	2	2	2	3	1		1
Acinetobacter spp.	22		5	6	3			6	2		
Total	75	2	14	16	7	10	7	13	5	0	1

Colistin MIC distributions with reference broth microdilution for 75 Gram-negative bacterial isolates

Colistin quality control results per MIC method

Colistin MIC method	Colisti	in MK	: (m	g/L)						
	Escher ATCC				Pseu aeruş ATCO	ginos	10		eridi C 138	ia coli 346ª
	0.125	0.25	0,5	1 2	0.25	0.5	124	2	4	8
Broth microdilution						_				
Reference frozen panel			7	1			8	1	7	
Sensititre custom plate		4 ^b	4			1	7		8	
MICRONAUT-S		5	3				4.4		7	1
MICRONAUT MIC-Strip	1	6	1				8	2	6	
SensiTest			5	1			7		7	
UMIC	3	3	2				51	2	7	
Gradient tests						_				
Etest, Oxoid MH		2	5				7		8	
Etest, BBL MH	12					4	8		8	
Etest, MHE	7				3	4		5	3	
MTS, Oxoid MH				6 1			2 5		8	
MTS, BBL MH			1	6			43		8	

Medical College of Wisconsin CONFIDENTIAL. Do not share.

Acceptable ranges are highlighted in grey and results on target values are bold.

a mor-1 positive.

^b All four values at ≤0.25 mg/L.

Matuschek et al. 2018. CMI. 24:865-870

knowledge changing life

Table 2

Essential and categorical agreements for colistin MIC tests for 75 Gram-negative bacteria with MICs on frozen broth microdilution panels as reference

	Organism	E coli and K. pneumoniae (n-32)	P. aeruginosa (n-21)	Acinetobacter spp. (n-22)	All isolates (n-75)
	Colistin reference MIC range (mg/L)	0.25-32	0.25-128	0.5-32	0.25-128
لا Essential agree ment (EA)	Sensititre custom plate ^b	96	100	91	96
0 ()	MICRONAUT-S	97	100	91	96
	MICRONAUT MIC-Strip	97	100	100	99
	SensiTest	96	93	71	88
	UMIC ^d	91	75	77	82
	Etest, Oxoid MH	84	62	59	71
	Etest, BBL MH	63	52	4.5	43
	Etest, MHE	75	43	9.1	47
	MTS, Oxoid MH	59	57	41	53
	MTS, BBL MH	75	57	59	65
% Gategorical agreement (CA)*	Sensititre custom plate	97	95	91	95
angunan greenen (er)	MICRONAUT-S	94	86	86	89
	MICRONAUT MIC-Strip	94	91	86	91
	SensiTest	94	91	82	89
	UMIC	94	91	91	92
	Etest, Oxoid MH	94	71	73	81
	Etest, BBL MH	94	67	68	79
	Etest, MHE	94	76	82	85
	MTS. Oxoid MH	81	71	82	79
	MTS, BBL MH	84	71	68	76
Number of major errors (ME) ^f	Sensititre custom plate	1	1	2	4
Number of major errors (ME)	MICRONAUT-S	2	i	3	6
	MICRONAUT MIC-Strip	2	0	3	5
	SensiTest	2	1	4	7
	UMIC	2	1	0	3
	Etest, Oxoid MH	2	0	0	2
	-	1	0	0	1
	Etest, BBL MH	2	0	-	2
	Etest, MHE	2	0	0	
	MTS, Oxoid MH		0	0	0
Number of sums and an owner (10 fD)	MTS, BBL MH	0	-	0	0
Number of very major errors (VME) [#]	Sensititre custom plate	0	0	0	0
	MICRONAUT-S	0	2	0	2
	MICRONAUT MIC-Strip	0	2	0	2
	SensiTest	0	1	0	1
	UMIC	0	1	2	3
	Etest, Oxoid MH	0	6	6	12
	Etest, BBL MH	1	7	7	15
	Etest, MHE	0	5	4	9
	MTS, Oxoid MH	6	6	4	16
	MTS, BBL MH	5	6	7	18

* MICs being within ± 1 dilution of reference MICs.

^b Because of truncations in the MIC dilutions, the total number of tests for calculation of EA was 28 for E. coli/K. pneumoniae and 19 for P. aeruginosa.

⁶ Because of truncations in the MIC dilutions, the total number of tests for calculation of EA was 26 for E. coli/K. pneumoniae, 15 for P. aeruginosa and 17 for Acinetobacter spp.

^d Because of truncations in the MIC dilutions, the total number of tests for calculation of EA was 20 for P. aeruginosa.

* Test results with correct susceptibility categorization.

^f Resistant with test method, susceptible with reference method – false resistant.

8 Susceptible with test method, resistant with reference method - false susceptible,

Matuschek et al. 2018. CMI. 24:865-870

Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

EA AND CA FOR

COLISTIN MICS

CEFTAZIDIME-AVIBACTAM AND CEFTOLOZANE-TAZOBACTAM – P. AERUGINOSA AND ENTEROBACTERICEAE

TABLE 2 Essential and categorical agreement between BMD and Etest or disk diffusion for testing susceptibility to ceftazidime-avibactam and ceftolozane-tazobactam^a

	BMD			Etest			Disk diffusio	n
Drug, pathogen (no. of Isolates)	Median MIC (µg/ml) ^a	Range of MIC (µg/ml)*	No. (%) of resistant isolates	No. (%) of Isolates with EA	No. (%) of Isolates with CA	No. of errors	No. (%) of Isolate with CA	No. of errors
Ceftazidime-avibactam, CRE (n = 74)	2	0.25-512	13 (18)	66 (89)	72 (97)	2 (VME)	56 (76)	18 (ME)
Ceftolozane-tazobactam, CRP (n = 72)	1	0.5-256	6 (8)	57 (79)	69 (96)	3 (minor)	68 (94)	4 (minor)

-BMD, broth microdilution; CA, categorical agreement; CRE, carbapenem-resistant Enterobocteriaceae; CRP, carbapenem-resistant Pseudomonas aeruginosa; EA, essential agreement; ME, major error; VME, very major error. Minor errors were identified as BMD results that were categorized as resistant or susceptible and Etest/disk diffusion results that were categorized as resistant. Very major errors were identified as BMD results that were categorized as susceptible and Etest/disk diffusion results that were categorized as resistant. Very major errors were identified as BMD results that were categorized as resistant and Etest/disk diffusion results that were categorized as resistant. Very major errors were identified as BMD results that were categorized as resistant and Etest/disk diffusion results that were categorized as susceptible.

*The median ceftazidime-avibactam MIC for E. coll ATCC 25922 was 0.25 μg/ml (CLSI reference range, 0.06 to 0.5 μg/ml), and the median ceftolograne-tazobactam MIC for P. genuginosa ATCC 27853 was 0.5 μg/ml (CLSI reference range, 0.25 to 1 μg/ml).

Medical College of Wisconsin CONFIDENTIAL. Do not share.

Shields RK et al. 2018. JCM. 56(2).

knowledge changing life

TIGECYCLINE AND THE PENEMS

Rechenchoski DZ et al. 2017. BJM. 509-514

Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

Table 1 – Comparison of interpretative results and MICS0 and MIC90 for antimicrobial agents and susceptibility testing methods.

Antimicrobial and method	N	MIC (MIC (µg/mL)		
	Susceptible	Intermediate	Resistant	50	90
Polymyxin B					
Broth microdilution*	36 (90)	1 (2.5)	3 (7.5)	0.5	1
Etest ^{® d}	NA	NA	NA	NA	NA
Vitek 2 [®] automated system ^d	NA	NA	NA	NA	NA
Disc diffusion ^e	39 (97.5)	0 (0)	1 (2.5)	NAd	NAd
Tigecycline					
Broth microdilution*	1 (2.5)	2 (5)	37 (92.5)	4	8
Etest [®]	8 (20)	26 (65)	6 (15)	1.5	4
Vitek 2 [®] automated system*	5 (12.5)	8 (20)	27 (67.5)	4	≥8
Disc diffusion*	11 (27.5)	25 (62.5)	4 (10)	NAd	NAd
Ertapenem					
Broth microdilution*	0 (0)	1 (2.5)	39 (97.5)	32	256
Etest ^{® d}	NA	NA	NA	NA	NA
Vitek 2 [®] automated system*	0 (0)	1 (2.5)	39 (97.5)	≥8	≥8
Disc diffusion*	0 (0)	0 (0)	40 (100)	NAd	NAd
Imipenem					
Broth microdilution ^b	4 (10)	2 (5)	34 (85)	16	64
Etest ^{® d}	NA	NA	NA	NA	NA
Vitek 2 [®] automated system ^b	4 (10)	3 (7.5)	33 (82.5)	≥16	≥16
Disc diffusion ^b	0 (0)	2 (5)	38 (95)	NAd	NAd
Meropenem					
Broth microdilution ^b	10 (25)	0 (0)	30 (75)	8	32
Etest ^{® d}	NA	NA	NA	NA	NA
Vitek 2 [®] automated system ^b	10 (25)	0 (0)	30 (75)	8	≥16
Disc diffusion ^b	0 (0)	2 (5)	38 (95)	NAd	NAd

Note: For the interpretation of antimicrobial susceptibility testing, was used recommendation of the Agência Nacional de Vigilância Sanitária (ANVISA), in Technical Note N- 01/2010.

EUCAST breakpoints.

^b CLSI breakpoints.

^e Breakpoints for Pseudomonas aeruginosa.

^d NA, not applicable.

TIGECYCLINE, MDR ACINETOBACTER ANDTHREE METHODSTABLE 1 - Percentage of susceptible and
strains and MIC50 and MIC90 of Tic

- Study enrolled 85 MDR *A.* baumanii isolates and compared three methods
 - NO GOLD STANDARD AT LEAST NOT WELL DESCRIBED
 - $\circ~$ 95.2% susceptible by "BMD"
 - BREAKPOINTS USED ARE NOT CLEARLY EXPLAINED – likely using FDA/EMA for *Enterobactericeae*
- Found substantial differences in S vs R call rates based on method

knowledge changing life

Medical College of Wisconsin CONFIDENTIAL. Do not share.

TABLE 1 - Percentage of susceptible and resistantstrains and MIC50 and MIC90 of Tigecyclineusing the three methods.

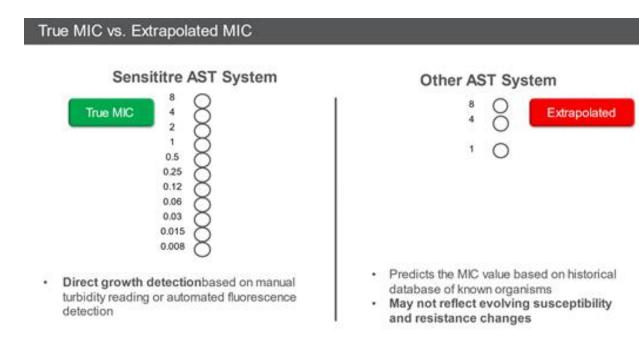
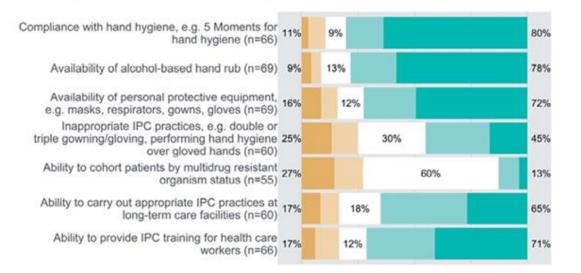

	% of is	olates	MIC	(mg/L)
	Susceptible	Resistant	50%	90%
Sensititre	95,2	4,8	0,25	1,00
Vitek2	63,0	37,0	1,00	8,00
Etest	10,7	89,3	2,00	16,00

TABLE 2 - MICs of Tigecycline using the three	e
methods.	

MIC (mg/L)	Sensititre	Vitek2	E-test
0.12	11		
0.25	39		2
0.50	14	22	
1.00	16	31	7
2.00	4	10	41
4.00		2	15
8.00		19	1
16.00			13
32.00			1
128.00			2
256.00			2

Grandesso S et al. 2014. New Microbiol 37(4):503-508

RANGE OF DILUTIONS MATTERS IN DOSING


Medical College of Wisconsin CONFIDENTIAL. Do not share.

BROAD CHANGE AS A RESULT OF THE PANDEMIC WILL TRANSFORM HEALTHCARE AND HAVE AN IMPACT ON AMS

HAVE WE FINALLY CRACKED THE INFECTION CONTROL CHALLENGE?

h. Reported impact of COVID-19 on infection prevention and control (IPC) practices

J Antimicrob Chemother, Volume 76, Issue 11, November 2021, Pages 3045–3058, <u>https://doi.org/10.1093/jac/dkab300</u>

AN OPPORTUNITY TO REIMAGINE OURSELVES

Knobloch MJ et al. PMID 33524453